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Abstract 

The maximum compression direction along the San Andreas fault is known to be at 69±14° 
regionally, and at depth in the SAFOD drill hole, inclined against the sense of shear. A 
theoretical model predicts a stable direction at 68.4° to the fault. Porphyroclast studies in 
mylonites revealed a stable direction which divides σ-clasts from δ-clasts. The fabric dividers 
in recent studies are tightly restricted to angles of 66 to 72°, which is indistinguishable from 
the predicted 68.4° angle. It is suggested that the two phenomena from the brittle and the 
plastic field are both expressions of the same cause, the contracting eigendirection of the 
calculated force/displacement field. Elongated porphyroclasts in mylonites accumulate along 
a direction ca.10° above the bulk foliation plane, inclined against the sense of bulk shear. The 
theoretical model predicts a stable direction, the extending eigendirection, at 10.7°. The 
bisector of the two stable directions is at 28.8° to the bulk foliation and inclined in the sense 
of bulk shear, it should be a maximum shear direction. This direction is observed in S-C 
mylonites as the direction of C-plane initiation. It has all the kinematic properties predicted by 
the model. The theoretical model is therefore fully supported by observations from various 
fields which have been enigmatic so far.  

Introduction 

The understanding of stress and deformation is based to this day on a theory that has its roots 
in the 18th century, and which was worked out by A. Cauchy in 1827-1829. Today it is 
considered a fairly successful theory; however, this view was not shared unanimously at least 
in Cauchy's lifetime. Maxwell [1850] opened his essay with the statement, "There are few 
parts of mechanics in which theory has differed more from experiment than in the theory of 
elasticity"; whereas he mentioned other workers who were known for their experimental 
experience, he merely referred to 'mathematicians', but would not name Cauchy directly. His 
statement applies to the handling of the theoretical understanding of elasticity to this day in 
the sense that the theoretical development is still done mainly by mathematicians, whereas the 
experimental work is done by material scientists. That is, ultimate authority and experience 
are not in the same hands. This is certainly not so in thermodynamics.  

The theory of elasticity is not in open conflict with experiments for which the boundary 
conditions have at least orthorhombic symmetry (orthorhombic or axial compression/ 
stretching). Such experiments were the standard since the formation period of the theory. 
Simple shear experiments were technically difficult, they are done systematically only since 
the 1950s when the Cauchy theory had already acquired sacrosanct status. However, with 
some overview over several fields of research in materials, simple shear deformation seems to 
be always fraught with unexpected behavior in all four fields of deformation – elastic, 
viscous, plastic, brittle: solids subjected to plane simple elastic shear expand volumetrically; 
viscous fluids show laminar flow at slow velocities, but turn to turbulent flow for a reason that 
is still not understood; plastic simple shear is known to be highly concentrated and appears to 
be strongly favored, defying the assumption that the stress-strain relation is linear and/or 
independent of boundary conditions; and the understanding of cracks and joints especially in 



simple shear leaves much to be desired, starting with the fact that they are usually conjugate, 
yet the reason is not known. Perhaps Nature thus suggests that the pure or axial deformation 
state is not diagnostic, whereas the plane simple shear state is critical: it is, after all, the only 
deformation condition for which the symmetric properties of strain differ from those of 
displacement; hence simple shear is the pivotal testing ground for deformation theories.  

Vector fields were invented by Maxwell in 1861, and the full framework of linear and tensor 
algebra was worked out by Grassmann in 1878, including the invention of the zero vector and 
the rules for vector spaces. The modern understanding of classical physics is based on the 
breakthroughs of the 1850-1880 period, but elasticity is curiously free of them. For example, 
it is still solidly based on Newton's mechanics. However, elastic deformation is by nature a 
change of the energetic state in the sense of the First Law of thermodynamics since work is 
done by a surrounding upon a system, it belongs rightfully into thermodynamics; elastic-
reversible work is – for isotropic boundary conditions – PdV-work. There is no hint in the 
Euler-Cauchy theory that this is so. In none of the many textbooks on the theory of stress and 
deformation in continuum mechanics which I have seen – such as Cauchy [1827a, b], Love 
[1952], Green and Zerna [1954], Truesdell [1954], Sneddon and Berry [1958], Truesdell and 
Toupin [1960], Sokolnikoff [1964], Landau and Lifschitz [1965], Eringen [1967], Malvern 
[1968], Gurtin [1972, 1981], Truesdell [1991], Holzapfel [2000] – has there been any mention 
of the fact that a solid is held together by bonds, at least not in the respective chapters on 
stress theory, and usually not at all. Bonds do not exist in continuum mechanics. The first 
author to my knowledge who considered bonds was Maxwell [1850]; Cauchy did not yet 
know about them. Bonds are certainly mentioned in modern engineering textbooks or in 
fracture mechanics [e.g. Anderson, 2005], but the authors are clearly not aware of an 
incompatibility which nonetheless exists, and which expresses itself in many ways. One 
cannot ponder a bond-breaking process if bonds are not considered in the theory in the first 
place. The Euler-Cauchy theory does not even offer a term that can be interpreted to represent 
bonds, except indirectly through proportionality factors. However, bonds are forces, they need 
to be considered in the equilibrium equation. – Notably, one single outline to elasticity exists 
which differs substantially from the Euler-Cauchy theory: the approach by Helmholtz [1902; 
found in July 2010]. It is incomplete due to the author's sudden death in 1894, and 
subsequently hybridized by his staff who worked his lecture notes into a textbook; apparently 
they did not recognize the novelty in Helmholtz' thoughts. However, Helmholtz is the only 
author who derived a vector field from a potential energy term, who made use of a system of 
unit size, who clearly distinguished system and surrounding as in thermodynamics proper, and 
who indeed offers a term that can be understood to represent bonds. It is the only genuine 
precursor to this author's work [Koenemann, 2008a].  

Natural simple shear 

This author's reservations against the Cauchy theory are outlined in Koenemann [2001, 
2008b]. Instead, thermodynamics in its common form offers a fully satisfying theory of 
elasticity for a gas subjected to isotropic pressure increase. It also provides the terms that help 
to understand elastic work as well as a measure of bond strength, the internal pressure 
(∂U/∂V)T. The thermodynamic theory in its common scalar form applies to isotropic 
conditions, which is sufficient for a gas, but not for a solid. It was thus the intent to transform 
it into a vector field theory which permits to consider anisotropic boundary conditions as well, 
and to make it applicable to solids, while leaving the core properties of the scalar theory 
untouched [Koenemann, 2008a]. In this paper I compare several observed aspects of 
geological simple shear deformation with the predictions derived through the new approach.  



The new approach is based on the thermodynamic equilibrium condition Psyst + Psurr = 0. The 
forces exerted by system and surrounding at one another are derived from two potentials 
which are differentiated twice with respect to the coordinates to yield two tensors, one for the 
material properties, one to model the external boundary conditions; the forces fsyst and fsurr are 
then found through integration over the radius r of the thermodynamic system. System and 
surrounding are thought to be solidly bonded, which has the effect that equilibrium exists by 
definition as long as no bonds are broken. The result is a force field f the properties of which 
are functions of the material properties and the boundary conditions. The work equation PdV 
of scalar thermodynamics becomes fdr in vector form; if it is applied to the resulting force 
vector field f the elastic displacement field is derived, such that the resulting force field f and 
the displacement field have identical properties. The strain may then be calculated if desired. 
The elastic displacements may be minute, but the elastic force field controls the general 
reaction of the rock to loading below and above the brittle or plastic yield point, and thus the 
orientation of the developing structures. The force/displacement field for simple shear is 
shown in Fig.1d. It has a contracting eigendirection (direction of maximum compression) at 
68.4/111.6° and an extending eigendirection (direction of tension or minimum compression) 
at 169.3/10.7° to the fault.  

The San Andreas Fault 

The stress field along the San Andreas fault in California has been the subject of much 
research because the maximum compression direction differs significantly from the 45° 
direction expected so far. Recent results from breakout observations in the SAFOD drill hole 
have confirmed an orientation of 69±14° at depth in the fault [Hickman and Zoback, 2004]; 
the same direction has been found regionally around the fault [Zoback et al., 1987]. The 
observed mean direction is indistinguishable from the predicted value (Fig.1a). This author 
concurs with the common assumption that cracks should open parallel to the maximum 
loading direction, independent of the theory that is being tested. The prediction is based on the 
condition that the system is coherent and completely confined, and any free surfaces are 
infinitely far away. Near an interface to freespace the boundary conditions would change 
because this would give the material more freedom to relax, which would result in local 
reorientation of the eigendirections. Measurements at shallow depths are therefore potentially 
unreliable. The data by Hickman and Zoback [2004] are particularly relevant since they were 
taken at depths where any perturbations in the boundary conditions due to surface proximity 
or extended cavities along faults in the vicinity can be ruled out.  

Fabric properties of mylonites 

Passchier and Simpson [1986] found that porphyroclasts in metamorphic shear zones can 
rotate either way, resulting in structures which they termed σ- and δ-clasts; whereas the σ-
clasts indicate a rotation history which is synthetical to the overall sense of shear, the δ-clasts 
appear to have rotated in an antithetical sense. Simpson and De Paor [1997] realized that the 
σ-δ populations are separated by a line in an orientation diagram which acts as a fabric 
divider. They also successfully produced two examples in which the divider is oriented at 
62/118° and 80/100° to the bulk foliation plane. More recent studies show much less 
variation; Law et al. [2004] found an angle of 69/111°, Kurz and Northrop [2008] measured 
angles of 72/108°, 71.5/108.5°, 66/114° and 68/112° (Fig.1b). If taken together, the data 
concentrate close to 69/111°, with the exception of those of Simpson and De Paor [1997]. 
However, their results are based on relatively few clast observations in comparison to the 
more recent studies. If their angles are disregarded, the fabric divider is surprisingly stable. 
The data of Law et al. [2004] and Kurz and Northrop [2008] form a cluster which is 
statistically indistinguishable from the 68.4/111.6° orientation for the contracting 



eigendirection predicted by this author (Fig.1b), with much less spread than the data from the 
brittle field [Hickman and Zoback 2004]. It is therefore suggested that Simpson and De Paor 
[1997] discovered the contracting eigendirection in the mylonitic fabric without using brittle 
features.  

Porphyroclasts with elongated aspect ratios generally show a common orientation in shear 
zones. By current interpretations they are expected to align with the bulk foliation plane; but 
this is almost never the case. Instead, Law et al. [2004] found that the σ-clast orientations 
form a cluster ca.10° above the bulk foliation plane, and the larger the aspect ratio, the better 
the orientations are focused (Fig.1c). The observed direction is again statistically 
indistinguishable from that of the extending eigendirection at 10.7° predicted by this author. 
The clast orientations are even more interesting because of their relation to S-C fabrics in 
mylonites. The bulk foliation in shear zone rocks tends to be composed at the microscopic 
scale by relatively long parts where the foliation is rotated ca.10° against the sense of shear 
(the S-plane), and relatively short sections which together form inclined discontinuities on 
which the shear was synthetical (the C-plane). The latter appear to be generated close to 30° 
inclined in the sense of shear and are assumed to rotate antithetically during progressive 
deformation [Kurz and Northrop, 2008]. These observations again fully confirm this author's 
predictions: the bisector of the two eigendirections (see above) at 28,8° below the reference 
plane (bulk foliation) is expected to be a maximum shear direction; the shear on that plane 
should be synthetical while the plane simultaneously stretches, and rotates antithetically 
towards the extending eigendirection (Fig.1d).  

Significance for faults and shear zones 

The observed data from the brittle and plastic field closely coincide with the eigendirections 
of the force field, and the elastic displacement field predicted by the new approach 
[Koenemann, 2008a]. As of this point no evidence is known to this author that is not in accord 
with it; instead, it offers solutions to problems all of which have been without a satisfying 
explanation for a very long time. There are other aspects of the new approach which are also 
fully supported by observations, such as the energetics of elastic and plastic deformation in 
pure and simple shear. The observed 69° direction appears to be a common feature to faults 
and shear zones in general. It is taken as the maximum compression direction in the brittle 
field [Zoback et al., 1987, Hickman and Zoback 2004]. There is no reason to assume a 
different interpretation in the plastic field. Speculations about vorticity numbers may therefore 
be misguided. The physics and kinematics of simple shear zones appears to be very different 
from earlier models. It is possible that a new theoretical understanding of the mechanics of 
faults is required.  
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Fig.1: Data and predictions for dextral shear. (A) White, gray [H&Z]: measured maximum 
compression direction with standard deviation along the San Andreas fault (SAF) at 
69/111±14° [Hickman and Zoback, 2004]. Black [K]: predicted direction at 68.4/111.6° 
[Koenemann, 2008a]. (B) Fabric divider lines from clast orientation studies in mylonites. 
Short lines [S&DP]: Simpson and De Paor [1997]; medium lines [K&N]: Kurtz and Northrop 
[2008]; long line [K, L]: Law et al. [2004], which is indistinguishable from prediction by 
Koenemann [2008a]. SZB: shear zone boundary or bulk foliation plane. (C) Porphyroclast 
orientation and aspect ratio data [Law et al., 2004]; black dots: forward-rotated σ-clasts, open 
dots: δ-clasts. Diagnostic clasts shown only. Fabric divider line [L] at 69/111° as in (B); long 
axes of σ-clasts accumulate along a direction ca.10° above the SZB. Predicted directions [K] 
as in (D). (D) Predicted force/displacement field for homogeneous elastic-reversible simple 
shear [Koenemann, 2008a]. c: contracting eigendirection at 68.4/111.6°; e: extending 
eigendirection at 169.3/10.7°; C, R: C-plane in SC-fabric, and Riedel plane in plastic 
deformation.  


