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Abstract

The maximum compression direction along the Sanrdamslfault is known to be at 6%4°
regionally, and at depth in the SAFOD drill holeclined against the sense of shear. A
theoretical model predicts a stable direction a#®&o the fault. Porphyroclast studies in
mylonites revealed a stable direction which dividedasts fromd-clasts. The fabric dividers
in recent studies are tightly restricted to angle66 to 72°, which is indistinguishable from
the predicted 68.4° angle. It is suggested thattwiee phenomena from the brittle and the
plastic field are both expressions of the same eatie contracting eigendirection of the
calculated force/displacement field. Elongated pgrpclasts in mylonites accumulate along
a direction ca.10° above the bulk foliation plaimelined against the sense of bulk shear. The
theoretical model predicts a stable direction, #éxtending eigendirection, at 10.7°. The
bisector of the two stable directions is at 28@the bulk foliation and inclined in the sense
of bulk shear, it should be a maximum shear dioectiThis direction is observed in S-C
mylonites as the direction of C-plane initiationhés all the kinematic properties predicted by
the model. The theoretical model is therefore felypported by observations from various
fields which have been enigmatic so far.

Introduction

The understanding of stress and deformation iscbeséhis day on a theory that has its roots
in the 18" century, and which was worked out by A. Cauchyl827-1829. Today it is
considered a fairly successful theory; howeves #ew was not shared unanimously at least
in Cauchy's lifetimeMaxwell [1850] opened his essay with the statement, "Theeefew
parts of mechanics in which theory has differed enfoom experiment than in the theory of
elasticity”; whereas he mentioned other workers wiee known for their experimental
experience, he merely referred to 'mathematicidos'would not name Cauchy directly. His
statement applies to the handling of the theoretinderstanding of elasticity to this day in
the sense that the theoretical development isdgtiile mainly by mathematicians, whereas the
experimental work is done by material scientistisatTis, ultimate authority and experience
are not in the same hands. This is certainly nan $slbermodynamics.

The theory of elasticity is not in open conflicttiviexperiments for which the boundary
conditions have at least orthorhombic symmetry h@mtombic or axial compression/
stretching). Such experiments were the standarcesine formation period of the theory.
Simple shear experiments were technically diffictiiey are done systematically only since
the 1950s when the Cauchy theory had already amtjsacrosanct status. However, with
some overview over several fields of research itenmals, simple shear deformation seems to
be always fraught with unexpected behavior in allrffields of deformation — elastic,
viscous, plastic, brittle: solids subjected to plammple elastic shear expand volumetrically;
viscous fluids show laminar flow at slow velocitiésit turn to turbulent flow for a reason that
is still not understood; plastic simple shear iswn to be highly concentrated and appears to
be strongly favored, defying the assumption that stress-strain relation is linear and/or
independent of boundary conditions; and the undedsthg of cracks and joints especially in



simple shear leaves much to be desired, startitiy tve fact that they are usually conjugate,
yet the reason is not known. Perhaps Nature thggests that the pure or axial deformation
state is not diagnostic, whereas the plane simparsstate is critical: it is, after all, the only
deformation condition for which the symmetric prdjes of strain differ from those of
displacement; hence simple shear is the pivotahteground for deformation theories.

Vector fields were invented by Maxwell in 1861, ahd full framework of linear and tensor
algebra was worked out by Grassmann in 1878, imuduthe invention of the zero vector and
the rules for vector spaces. The modern understgnali classical physics is based on the
breakthroughs of the 1850-1880 period, but eldgtisicuriously free of them. For example,
it is still solidly based on Newton's mechanicswéwer, elastic deformation is by nature a
change of the energetic state in the sense ofitee llaw of thermodynamics since work is
done by a surrounding upon a system, it belongstftlly into thermodynamics; elastic-
reversible work is — for isotropic boundary comulis —PdV-work. There is no hint in the
Euler-Cauchy theory that this is so. In none ofrtreny textbooks on the theory of stress and
deformation in continuum mechanics which | havenseesuch a€auchy[1827a, b],Love
[1952], Geenand Zerna[1954], Truesdell[1954], Sneddorend Berry [1958], Truesdelland
Toupin [1960], Sokolnikoff[1964], Landau and Lifschitz [1965], Eringen [1967], Malvern
[1968], Gurtin [1972, 1981] Truesdell[1991],Holzapfel[2000] — has there been any mention
of the fact that a solid is held together by boratsleast not in the respective chapters on
stress theory, and usually not at all. Bonds doexidt in continuum mechanics. The first
author to my knowledge who considered bonds Maswell [1850]; Cauchy did not yet
know about them. Bonds are certainly mentioned odenn engineering textbooks or in
fracture mechanics [e.gAnderson 2005], but the authors are clearly not aware of a
incompatibility which nonetheless exists, and whiekpresses itself in many ways. One
cannot ponder a bond-breaking process if bondsi@ireonsidered in the theory in the first
place. The Euler-Cauchy theory does not even afterm that can be interpreted to represent
bonds, except indirectly through proportionalitgttars. However, bonds are forces, they need
to be considered in the equilibrium equation. —akitt, one single outline to elasticity exists
which differs substantially from the Euler-Cauclhdry: the approach iyelmholtz[1902;
found in July 2010]. It is incomplete due to thethew's sudden death in 1894, and
subsequently hybridized by his staff who workedlaure notes into a textbook; apparently
they did not recognize the novelty in Helmholtzughts. However, Helmholtz is the only
author who derived a vector field from a potentiaérgy term, who made use of a system of
unit size, who clearly distinguished system andaurding as in thermodynamics proper, and
who indeed offers a term that can be understooepeesent bonds. It is the only genuine
precursor to this author's worKgenemann2008a].

Natural ssimple shear

This author's reservations against the Cauchy yhace outlined inKoenemann[2001,
2008Db]. Instead, thermodynamics in its common fafiers a fully satisfying theory of
elasticity for a gas subjected to isotropic pressocrease. It also provides the terms that help
to understand elastic work as well as a measurboofl strength, the internal pressure
(0U/0V)t. The thermodynamic theory in its common scalarmfoapplies to isotropic
conditions, which is sufficient for a gas, but famt a solid. It was thus the intent to transform
it into a vector field theory which permits to cafes anisotropic boundary conditions as well,
and to make it applicable to solids, while leavihg core properties of the scalar theory
untouched Koenemann 2008a]. In this paper |compare several obseraspects of
geological simple shear deformation with the preolins derived through the new approach.



The new approach is based on the thermodynamidilegun conditionPsys; + Psyr = 0. The
forces exerted by system and surrounding at on¢henare derived from two potentials
which are differentiated twice with respect to de®rdinates to yield two tensors, one for the
material properties, one to model the external daanconditions; the forcds,s;andfs are
then found through integration over the radiusf the thermodynamic system. System and
surrounding are thought to be solidly bonded, wtiiak the effect that equilibrium exists by
definition as long as no bonds are broken. Theltresa force fieldf the properties of which
are functions of the material properties and thenldary conditions. The work equati®dV

of scalar thermodynamics beconfes in vector form; if it is applied to the resultirigrce
vector fieldf the elastic displacement field is derived, sudt the resulting force fieltland
the displacement field have identical propertidse $train may then be calculated if desired.
The elastic displacements may be minute, but thstiel force field controls the general
reaction of the rock to loading below and abovelthttle or plastic yield point, and thus the
orientation of the developing structures. The faitsplacement field for simple shear is
shown in Fig.1d. It has a contracting eigendirect{direction of maximum compression) at
68.4/111.6° and an extending eigendirection (dimecbf tension or minimum compression)
at 169.3/10.7° to the fault.

The San Andreas Fault

The stress field along the San Andreas fault inf@ala has been the subject of much
research because the maximum compression diredifters significantly from the 45°
direction expected so far. Recent results fromKkmetiobservations in the SAFOD drill hole
have confirmed an orientation of £%° at depth in the faulHickmanand Zoback 2004];
the same direction has been found regionally ardhedfault Fobacket al., 1987]. The
observed mean direction is indistinguishable frdva predicted value (Fig.1a). This author
concurs with the common assumption that cracks ldhopen parallel to the maximum
loading direction, independent of the theory tkdteing tested. The prediction is based on the
condition that the system is coherent and completehfined, and any free surfaces are
infinitely far away. Near an interface to freespdabe boundary conditions would change
because this would give the material more freedometax, which would result in local
reorientation of the eigendirections. Measuremanthallow depths are therefore potentially
unreliable. The data bylickmanand Zoback[2004] are particularly relevant since they were
taken at depths where any perturbations in the demynconditions due to surface proximity
or extended cavities along faults in the vicinignde ruled out.

Fabric properties of mylonites

Passchierand Simpson[1986] found that porphyroclasts in metamorphieashzones can
rotate either way, resulting in structures whichytltermedo- and d-clasts; whereas the-
clasts indicate a rotation history which is synitadtto the overall sense of shear, thelasts
appear to have rotated in an antithetical seédsepsorand De Paor [1997] realized that the
0-0 populations are separated by a line in an oriemtadiagram which acts as a fabric
divider. They also successfully produced two exawmph which the divider is oriented at
62/118° and 80/100° to the bulk foliation plane. rBlaecent studies show much less
variation;Law et al.[2004] found an angle of 69/111Kurz and Northrop [2008] measured
angles of 72/108°, 71.5/108.5°, 66/114° and 68/1(F2§.1b). If taken together, the data
concentrate close to 69/111°, with the exceptiorthoke ofSimpson and De Padd997].
However, their results are based on relatively tdast observations in comparison to the
more recent studies. If their angles are disreghrthee fabric divider is surprisingly stable.
The data ofLaw et al. [2004] andKurz and Northrop[2008] form a cluster which is
statistically indistinguishable from the 68.4/111.6@rientation for the contracting



eigendirection predicted by this author (Fig.1lbithwnuch less spread than the data from the
brittle field [Hickmanand Zoback2004]. It is therefore suggested tlsatnpson and De Paor
[1997] discovered the contracting eigendirectiorth@ mylonitic fabric without using brittle
features.

Porphyroclasts with elongated aspect ratios gdgesabw a common orientation in shear
zones. By current interpretations they are expetealign with the bulk foliation plane; but
this is almost never the case. Instelaalw et al.[2004] found that they-clast orientations
form a cluster ca.10° above the bulk foliation glaand the larger the aspect ratio, the better
the orientations are focused (Fig.1c). The obsengdgkction is again statistically
indistinguishable from that of the extending eigesction at 10.7° predicted by this author.
The clast orientations are even more interestingalee of their relation to S-C fabrics in
mylonites. The bulk foliation in shear zone rockads to be composed at the microscopic
scale by relatively long parts where the foliatisrrotated ca.10° against the sense of shear
(the S-plane), and relatively short sections whimpether form inclined discontinuities on
which the shear was synthetical (the C-plane). [atter appear to be generated close to 30°
inclined in the sense of shear and are assumedtaterantithetically during progressive
deformation Kurz and Northrop2008]. These observations again fully confirns thuthor's
predictions: the bisector of the two eigendirectigeee above) at 28,8° below the reference
plane (bulk foliation) is expected to be a maximshear direction; the shear on that plane
should be synthetical while the plane simultangowdtetches, and rotates antithetically
towards the extending eigendirection (Fig.1d).

Significance for faultsand shear zones

The observed data from the brittle and plastidfi@dbsely coincide with the eigendirections
of the force field, and the elastic displacememdfi predicted by the new approach
[Koenemann2008a]. As of this point no evidence is knownhis author that is not in accord
with it; instead, it offers solutions to problem$ @ which have been without a satisfying
explanation for a very long time. There are otlspeats of the new approach which are also
fully supported by observations, such as the emtiegyef elastic and plastic deformation in
pure and simple shear. The observed 69° directipears to be a common feature to faults
and shear zones in general. It is taken as thermemi compression direction in the brittle
field [Zoback et al 1987,Hickmanand Zoback2004]. There is no reason to assume a
different interpretation in the plastic field. Spé&ations about vorticity numbers may therefore
be misguided. The physics and kinematics of sirshkear zones appears to be very different
from earlier models. It is possible that a new te&oal understanding of the mechanics of
faults is required.
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Fig.1: Data and predictions for dextral shear. {¥hite, gray [H&Z]: measured maximum
compression direction with standard deviation aldhg San Andreas fault (SAF) at
69/11114° [Hickman and Zoback2004]. Black [K]: predicted direction at 68.4/161
[Koenemann 2008a]. (B) Fabric divider lines from clast otigiion studies in mylonites.
Short lines [S&DP]Simpson and DBaor [1997]; medium lines [K&N]Kurtz and Northrop
[2008]; long line [K, L]: Law et al. [2004], whicls indistinguishable from prediction by
Koenemann2008a]. SZB: shear zone boundary or bulk foliatane. (C) Porphyroclast
orientation and aspect ratio datayv et al, 2004]; black dots: forward-rotatedclasts, open
dots: &-clasts. Diagnostic clasts shown only. Fabric ddviine [L] at 69/111° as in (B); long
axes ofo-clasts accumulate along a direction ca.10° abbgeSZB. Predicted directions [K]
as in (D). (D) Predicted force/displacement fietsl homogeneous elastic-reversible simple
shear Koenemann 2008a]. ¢. contracting eigendirection at 68.4/111.68; extending
eigendirection at 169.3/10.7°; C, R: C-plane in fakxc, and Riedel plane in plastic
deformation.



