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The nature of elastic deformation is examined in the light of the potential theory. The concepts 
and mathematical treatment of elasticity and the choice of equilibrium conditions are adopted from 
the mechanics of discrete bodies, e. g., celestial mechanics; they are not applicable to a change 
of state. By nature, elastic deformation is energetically a Poisson problem since the buildup of an 
elastic potential implies a change of the energetic state in the sense of thermodynamics. In the 
Euler-Cauchy theory, elasticity is treated as a Laplace problem, implying that no change of state 
occurs, and there is no clue in the Euler-Cauchy approach that it was ever considered as one. The 
Euler-Cauchy theory of stress is incompatible with the potential theory and with the nature of 
the problem; it is therefore wrong. The key point in the understanding of elasticity is the elastic 
potential.
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Introduction

Despite much effort to carefully outline the princi­
ples of a physical theory, one cannot always avoid to 
get into circular reasoning. For example, in mechan­
ics the Newtonian definition of a force, Newtonian 
work, the Hamiltonian, the use of an equation of mo­
tion and the continuity equation are interdependent 
concepts; if one accepts one of them as relevant to the 
problem unter discussion, the others must necessar­
ily follow. It is not really possible to consider other 
concepts then. This can only be avoided if the nature 
of that physical process is carefully examined before 
the above concepts are even considered; the theory by 
which this is done is the theory of potentials which 
occupies the highest level of generality in the phys­
ical sciences. Any physical process must fit into one 
of the categories offered by that theory.

I have never seen an attempt to derive the theory of 
elasticity from the theory of potentials. Historically, 
the stress theory is older (Euler published the cut 
model in 1776, Cauchy proposed the stress tensor in 
the first decade of the 19th century; the theory of po­
tentials was developed between 1830- 1840 by Gauss 
and contemporaries), and -  insight in hindsight -  was 
heavily influenced by the availability of Hooke’s law, 
which is phenomenological. I believe that it was not 
possible to ask the right questions regarding the nature

of elasticity and deformation before 1842, the year 
in which both the first law of thermodynamics and 
the Hamiltonian were published, from whence it be­
came possible to make a clear distinction between 
the conservative physics of discrete bodies in free 
space on the one hand, and non-conservative physics 
of changes of state on the other. Fundamental to the 
understanding of the potential theory is the concept 
of vector fields, first proposed by Lagrange in 1784, 
one year after Euler’s death. The fact that Euler did 
not know it yet explains many idiosyncrasies of con­
tinuum mechanics.

Over the years I have had the opportunity to re­
alize that the concepts, geometric and mathematical 
properties of the potential theory are so completely 
unknown in continuum mechanics that a question re­
garding the nature of the elastic potential was usually 
met with silence; the reason is that the conclusions 
to be drawn from potential theory are so obviously at 
variance with continuum mechanics that only one of 
them can be correct. Thus the first step in this paper is 
a discussion of the principles of continuum mechanics 
and their hidden consequences, to show which ques­
tions are implicitly asked and answered by choosing a 
particular concept. This discussion cannot avoid being 
repetitive, due to the aforementioned interdependence 
of thoughts. It follows a short outline of the theory of 
potentials. Finally, the simplest of all elastic defor-
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mations, isotropic loading, is presented in vector field 
form. Notation: f  = vectors, /  = vector magnitudes, 
T = tensors, S = scalars and points. References are of­
ten given with page numbers, e.g., [1:147], in order 
to facilitate comparison.

The Tools of the Euler-Cauchy Theory

1. What is Deformation?

The answer provided by the textbooks is: “Defor­
mation is a transformation of points” [2]. The phe­
nomenological character of present continuum me­
chanics cannot possibly be expressed in more suc­
cinct form. -  Deformation is a physical process. As 
such it may be a conservative or a non-conservative 
process; if it is the latter, it is still to be determined 
whether it is a reversible or an irreversible process. 
(A conservative process is reversible by definition. 
Henceforth the term “reversible” will be used only 
in contrast to “irreversible”, i. e. it is implied that the 
process is non-conservative.)

A conservative system is a region in space the in­
terior of which does not interact with its surrounding, 
especially not in form of exchange of heat or work; it 
is an isolated system. Strictly speaking, a conservative 
process will take place only inside such a system, and 
ideally it cannot be measured because observations 
require interaction with the exterior. The characteris­
tic property of such a process is that it will not change 
the energy U of the system. The mathematical tool for 
a proper approach is the Laplace equation, V2U = 0 
[1:121; 15].

If interaction takes place between the interior and 
the exterior, the process is strictly no longer conser­
vative even if the energetic state of the system is un­
changed; the system acts as a source and as a sink of 
fluxes simultaneously. The mathematics of conserva­
tive processes may still be applied, provided they are 
found to be applicable; this point must be checked 
against the nature of the process under investigation. 
For example, a steady-state heat flow through a sys­
tem which remains itself in a constant thermal state, 
can be approached through the Laplace equation be­
cause heat can be transmitted only radially, and the 
exclusion of non-radial components from consider­
ation which is implied by the Laplace equation is 
justified.

If the energetic state of the system is changed due to 
interaction of interior and exterior, the process is non­

conservative (its energetic state is not conserved); the 
equation to be used is the Poisson equation V2U = ip, 
where (p is the charge [1:156; 15]. The process is 
reversible if the entropy flux is zero; otherwise it is 
irreversible.

A consideration of deformation without consider­
ation of its physical characteristics according to the 
above categories must be phenomenological because 
it may be a conservative, a reversible, or an irre­
versible process. 1. Volume-constant, infinitely slow 
equilibrium flow of a real gas is a conservative pro­
cess because no net work is done on the system, hence 
no elastic potential builds up. 2. Elastic deformation 
is reversible. 3. Plastic flow and flow involving dif­
fusion, i.e. viscous flow, are irreversible. In cases 2. 
and 3. the Laplace equation is not applicable. The key 
to the understanding of stress and deformation is the 
elastic state because by its nature, elastic deformation 
represents a change of state.

2. Definition of Force and Density

Euler gave the equations of motion as [3:151, 
Eqn. III. 1-1]

f  d v
I (x -  x 0) x P -^ jd V  = F.

Newton defined a force as /  = m a, where m  is the 
mass, and a = d v/d t the acceleration of the body with 
mass m. It is not possible to define force and mass 
independently [4]. p is the mass density. To which 
problems are these definitions applicable? Are there 
other definitions? If so, how do they differ in their 
nature?

First of all, Newton’s definition involves the iner­
tial mass with unit kg [3, 4]. It is therefore implied 
that a discrete body with given mass m  is allowed 
to move in free space without mechanical interaction 
with other bodies. (In the theory of gases, the effect of 
atomic collisions can be ignored because atoms can­
not be deformed; the collisions are “perfectly elastic”. 
A car engine may be considered a free-body problem 
if the motions of its parts are thought to be friction- 
free.) Newton’s force refers to a velocity potential [4] 
since work is done by positive or negative acceler­
ation. Free-body problems are abundant in physics;
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however, they are in the conservative class, from ce­
lestial mechanics to particle physics. Thus Newton's 
definition of a force does not apply to processes in­
volving other masses, or to potentials that do not relate 
to motions of bodies in free space.

The thermodynamic mass is dimensionless and in­
compatible with Newton’s definition of a force. In or­
der to compare the thermodynamic or chemical poten­
tials of two bodies consisting of different substances, 
say, K and Fe, their inertial mass is divided by the 
respective atomic weight, whereby the inertial prop­
erties are lost, and by Avogadro’s number, resulting 
in a quantity measured in mol. In thermodynamics, 
quantities of atoms or molecules are compared with 
one another; their inertial properties are as irrelevant 
as heat is irrelevant in mechanics. Thermodynamic 
processes involve thermodynamic potentials, such as 
the internal energy U, the free energy terms, and oth­
ers. A thermodynamic force, exerted by a system on 
its surrounding, is defined as

f  = e ldU/dxi . (2)

[1:52, 1:142]. The thermodynamic density is mea­
sured in mol per volume, n / V  = P / R T ,  whereas the 
inertial mass density is irrelevant.

Finally, a Newtonian force cannot be used to de­
scribe a change of state, and a thermodynamic force 
does not refer to the velocity of bodies in free space. 
/  = m a  is one single force vector only, it is not and 
cannot be a field force. The mechanical concepts are 
relevant to free-body motions only, they do not con­
sider their internal state. Deformation-causing forces 
in solids surely are field forces since e. g. by displac­
ing one atom relative to its surrounding in one partic­
ular direction, work is done not just in displacing the 
mass of the atom, but by changing the bond lengths 
in all directions. Field forces must be derived from a 
potential as in (2). It is not possible to transform an 
equation of motion into an equation of state, hence it 
is incorrect to use an equation of motion to describe a 
change of state. The Eq. (1) are obsolete at least since 
the invention of thermodynamics. The theory of stress 
a is solidly based on the equation of motion above [2, 
3, 5]. Thus if a deformation is partitioned into a vol­
ume term P d V and the volume-neutral strain term 
(Tijdeij, the equation

d U  = T d S  — P d V  — Vi, d s lJ (3)

is an impermissible mixture of references to the ther­

modynamic mass in the first and second term RHS, 
implying non-conservative processes, and to the iner­
tial mass in the last term.

3. The Continuity Equation

The continuity equation, first written by Euler, 
is [3]

where p, as above, is the inertial density. The continu­
ity equation is a mass conservation law: if d p/d t = 0, 
the remaining equation is a Laplace equation, v are 
the velocities of all mass differentials within a region 
which is separated by a chosen closed interface from 
its surrounding. The equation states that within that 
region the paths of all mass differentials cancel, such 
that mass is conserved.

The unstated assumptions in the use of the equation 
are: 1. that mass is the variable of interest; 2. that the 
mass differentials can move freely past one another;
3. that only radial motions of mass differentials need 
to be considered.

1. The assumption that mass is the variable of in­
terest. If a process /  = /(a , b), and if it is only con­
sidered to be /  = /(a ) , b is assumed constant. Vice 
versa for b. Replace a with mass and b with energy, 
and the point made above is proven. The continuity 
equation is designed to ensure that the paths of all 
mass differentials within the region cancel such that 
p is constant and mass is conserved. However, the 
equation has the side effect that energy is conserved, 
too. If work is some linear or non-linear function of 
the paths of the mass differentials only, it follows that 
the work done in achieving the deformation cancels 
if the paths cancel; thus no net work is done. Possibly 
Euler intended the implication; he had been a student 
of Johann Bernoulli who discovered the energy con­
servation law of conservative mechanics (that the sum 
of the kinetic and the potential energy is invariant). 
Euler did not know yet that the energy of a system 
(the potential) can be a variable, in fact he did not 
even know the concept energy; it was introduced by 
Thomas Young in 1787, and only then the concepts 
of force and energy could be clearly distinguished.

2. The assumption that the mass differentials in 
the region can move freely past one another, espe­
cially free of bonds and friction. This is a principle
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of mechanics in general; without it, the process fails 
to be conservative, which is all Newtonian mechanics 
is about [4, 6]. Although this is hardly a correct as­
sumption for elastic solids, it must be considered that 
the early workers were not thinking about elasticity. 
They were concerned with the flow of water; there 
the assumption regarding free motion appears to be 
more justified at first sight, except that viscous flow 
is today known to be an irreversible process. It was 
Tresca [7] who first “wished to apply the equations 
to solids which Cauchy had developed for water” ; 
and he wanted to study plastic deformation, which is 
irreversible again.

3. The assumption that only normal motions of 
mass differentials need to be considered. This fol­
lows from the mathematical form of the divergence 
theorem which is, in the context of the terms used in 
the continuity equation,

J  v  • nd  A = j  V -vd V  = 0, (5)

where dvi/dx l in (4) equals V-v in (5). Thus, tangen­
tial motions are explicitly excluded from considera­
tion: it is therefore implied that only normal motions 
of mass differentials contribute to the flux of interest. 
Since mass fluxes are the subject of the equation and 
Bernoulli’s law is implied (see 2.), and since mass 
is proportional to the energy of the system, the point 
is proven. The opposite -  that tangential components 
contribute to the total work done -  is precluded by 
the weight given on div a = 0 for a volume-neutral 
deformation [2:101] because div a  is meaningless if 
it is not implicitly proportional to the total work done. 
The identical conclusion follows from Cauchy's stress 
tensor (see below).

The consequences of the continuity equation are 
profound.

First, in choosing a founding stone for contin­
uum mechanics, a mass conservation law was given 
preference where an energy conservation law is re­
quired since elastic deformation is a non-conserva­
tive energetic process. This choice of preference gives 
the entire body of continuum mechanics a conserva­
tive mathematical structure, i.e. it is understood as 
a Laplace problem whereas it is certainly a Poisson 
problem, as is all of continuum physics [8]; it can­
not be anything but phenomenological. The point of 
interest in deformation theory is its energetics, not 
the mass distribution in space. By the nature of the

process under discussion it is permissible to make 
the implicit assumption that mass is conserved, in the 
same way as it is always assumed in equilibrium ther­
modynamics that the system is closed with respect to 
mass.

Second, it must be considered that the mass dif­
ferentials in a chosen region of solid cannot possibly 
move freely past one another, or else an elastic poten­
tial cannot build up. The continuity equation is only 
and exclusively applicable to infinitely slow equilib­
rium flow of a real gas where the assumptions (a) of 
free motion, (b) that non-radial motions can be dis­
regarded, and (c) of zero net work do hold, hence 
where indeed an elastic potential does not build up. 
But this case is not the subject of interest in defor­
mation theory. It is, in fact, impossible to define an 
elastic potential for a volume-neutral deformation in 
the continuum mechanics theory based on Euler; the 
equation of motion can also be given as diver = 0 
[2:101; 9:7-9], which is an explicit statement that no 
elastic potential exists, hence no net work is done: 
the divergence is a measure of the work done on a 
system [1:48-52]. Consider (3) above. The condition 
dsn  = 0 (summation implied) is the definition of 
a volume-neutral deformation. Thus, the equilibrium 
condition in current understanding dictates that an 
(being zero) is to be multiplied with a strain term, the 
trace of which En must be zero as well, such that the 
product term alj d s lj has no chance of being anything 
else but zero. If the process is reversible, Td S = 0; if 
the deformation is volume-neutral, Pd V  = 0; since 
both an = 0 and £n = 0, it follows that a^den = 0, 
hence d U -  0. Indeed, Snedden and Berg [10:13-15] 
derive an expression for an elastic potential; however, 
since their theoretical approach is based on the theory 
of variations which develops the concept of virtual 
work [4], it is itself a conservative concept. The nu­
merical value of their expression must again be zero.

Third, the normal displacements of the mass dif­
ferentials in the region indeed must cancel, and in­
evitably the work connected with these motions must 
cancel as well if the deformation is volume-neu­
tral, independent of the work function being used. 
The true error in the continuity equation (or rather, 
in the profound significance assigned to it) is that 
in using an equation similar or identical to the di­
vergence theorem the assumption is implied that 
/ /  • n d  A = J V f d V  = <p represents the total 
divergence of the system, whether (p = 0 or not, i. e. 
it is implied that tangential forces do not contribute
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to the divergence, or to the work done. If the mass 
differentials could indeed move freely, there would 
be no contribution to the work done by shear forces 
or shear motions, and the assumption is correct. How­
ever, the validity of the divergence theorem is already 
restricted if the boundary of the region passes through 
points of mass [ 1:43]. Furthermore, in solids the mass 
differentials are bound in place by bonds in all direc­
tions. Hence if one mass differential is displaced in 
one direction, work will be done on the bonds in all 
directions. It is a simple experimental task to sub­
ject a body of, say, circular shape to tangential forces 
only, and still maintain the equilibrium condition that 
I f  x r  d A = 0. The body will react (by expansion), 
hence work is done. The effect is known phenomeno- 
logically as dilatancy [11]. In continuum mechanics 
the question as to how much work is contributed to 
the total work done by the shear forces cannot be 
answered, it cannot even be asked.

Neither the inertial mass density p nor the thermo­
dynamic density n / V  is a state function by definition. 
If bonds exist within the volume of mass, it is possi­
ble to change the energetic state of a system through 
mechanical work without changing its volume -  the 
standard case of an “incompressible” deformation -  
and the density remains unchanged. The thermody­
namic density may be used as a state function with 
the understanding that all parts of the system are free 
to move past one another, such as a real gas. The con­
dition does not hold for solids with internal bonds. 
In any case, it is not possible to write a meaningful 
equation of state using the inertial density p.

4. The Equilibrium Conditions

Two points shall be made in this section: 1. that cur­
rent continuum mechanics uses an inappropriate equi­
librium condition; 2. that the orthogonality of stress 
is not an equilibrium condition, but a boundary con­
dition.

I. Types of equilibrium conditions. In his deriva­
tion of the stress tensor, Cauchy assumed a volume 
element in the shape of a tetrahedron. It is assumed 
that forces act upon the surface elements from outside; 
they are balanced by forces acting on the same sur­
faces from the inside. “According to Newton’s third 
law, the mutual action of a pair of particles [within the 
tetrahedron] consists of two forces acting along the 
line interconnecting the particles, equal in magnitude 
and opposite in direction to one another. Therefore the

resultant internal force is zero” [12:95]. The statement 
translates into the equilibrium condition datj /dxj  = 0 
[9:7-9]. Umow [5] explicitly states that “the case of 
external forces acting on the parts of the body is not 
considered”.

The equilibrium principle must be distinguished 
from the equilibrium condition. The principle is to be 
universally observed, whereas the chosen condition 
characterizes the process under discussion; choosing 
the wrong one will lead to a misconception. Newton’s 
equilibrium conditions apply to the free motion of a 
discrete body in space. That is, whichever forces are 
observed, their origin is exterior to the body, and they 
are in balance with one another, so the body is at 
rest. Newton’s equilibrium condition is explicitly not 
concerned with the internal state of the body; it cannot 
be considered.

The equilibrium condition above is a statement that 
the system of mass is in equilibrium with itself, i.e. it 
is unloaded. The relation between the interior and the 
exterior of the volume element, or between a system 
and its surrounding, is the subject of the thermody­
namic equilibrium condition which mandates that the 
fluxes into and out of a region in space must balance,

in tensor form V2Umt +V2Ueu = 0,

in vector form / int + / ext = 0, (6)

in scalar form •Pint + -̂ ext — 0

for isotropic conditions. Consider a solid in the un­
loaded state. Its volume is only determined by the 
strength of the internal bonds; the body is said to 
be in equilibrium with itself. In that case V2Uinl = 
V2Uext = 0, i. e. the Laplace equation is a valid condi­
tion -  but only and exclusively in the unloaded state. 
The body, here taken as a thermodynamic system, is 
therefore in its zero potential state.

If the body is loaded, the externally applied forces 
will interact with the internal bonds by changing the 
bond lengths. Therefore the body develops an internal 
non-zero potential to return into its old configuration, 
its equilibrium material state. Thus the application of 
the external forces results in the development of non­
zero internal forces that interact with the external ones 
such that they together form a new equilibrium state 
of the form above; the internal forces are therefore 
evoked forces. The quote by Eringen above says that 
along a loaded bond, the two parts on either side -  vol­
ume differentials, at least two atoms -  will exert equal
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forces with opposite sign upon each other, therefore 
equilibrium exists. This is not so; in the state of equi­
librium the two forces would have zero magnitude. 
The question is not whether the forces pointing to 
the left and right within the volume element balance; 
since they are internal forces, the question is whether 
they are non-zero, and whether or not they are bal­
anced by external forces acting on the system from 
outside. If imbalance exists, the body would undergo 
an unrestricted expansion, but not a motion in the 
Newtonian sense. Consider a one-dimensional model 
across a system:

a  —> | 6 • c —► | <— d,

where the externally controlled forces a  and d  act 
from the outside on the surfaces (vertical bars) of a 
body centered between b and c. The Newtonian equi­
librium balances a and d  because they are pointing 
left and right. However, since only balanced external 
forces can cause a change of state -  unbalanced ex­
ternal forces would cause an external acceleration -  
a and d  also point in the same direction in the sense 
that they point outside-in. b and c are evoked forces, 
they are mirror images of one another, acting inside- 
out. b and c are functions of the equilibrium of a  
and d\ a disequilibrium or gradient between b and c 
cannot exist. The thermodynamic equilibrium is that 
of the inside-pointing forces a  and d  vs. the outside- 
pointing forces b and c. Newton’s third law refers to 
Bernoulli’s energy conservation law, not to the first 
law of thermodynamics. This is clearly not apparent 
in the quote above.

2. Orthogonality of stress. The Newtonian condi­
tion for rotational equilibrium is /  /  x  rd  A  = 0. r  is a 
radius of a solid, extending from the center of mass Q 
of a discrete body to its surface point P,  f  is the force 
acting on P,  and A  is the surface of the discrete body, 
i. e. it is a closed surface. If A  is convex, the condition 
can also be given as f  f  x  rd  6, i. e. /  and r  are then 
a function of direction relative to Q. It is then obvi­
ous that the shape of the body given by some shape 
function /  = r(9) has a strong influence on the par­
ticular form of the equilibrium. The sum of dextral 
and sinistral rotating forces integrated over 6 alone 
may be seriously lopsided, but the rotational momen­
tum is still balanced if the properties of the vector 
field r  vary inversely to those of / ,  hence there is no 
reason to assume that the eigendi recti on s of the field 
f  alone must be orthogonal. There is only one mini­
mal constraint: the eigendirections must not coincide,

because then it is impossible to attain rotational equi­
librium.

Apparently, Euler perceived water as a kinetic sys­
tem of infinitesimally small bodies. The last paragraph 
above applies specifically to the equilibrium of one 
single discrete body. For a kinetic system of n discrete 
bodies freely moving about in space there is no such 
thing as an overall equilibrium condition, be it nor­
mal or rotational, there is at best a zero flux across its 
boundaries. Yet the external (thermodynamic) equi­
librium condition between system and surrounding 
was unknown to Euler. His orthogonality requirement 
looked like an equilibrium condition, but it never was 
one: whether or not a volume of gas or water is in 
a state of equilibrium, if subjected to an orthogo­
nal configuration of forces, can be checked simply 
by clapping the hands together. (It would work for a 
cube or sphere of solid because of the bonds; but a 
volume of solid is no longer a kinetic system.) How­
ever, Euler’s real error is someplace else. It seems that 
he started with his group of planes with orientation n  
(an unit vector) intersecting in the point Q\ thus the 
point of action of all average forces per area is Q. This 
deprived him of the radius vector r ,  so he replaced 
Newton’s cross product /  x r  by /  x  n,  which is 
entirely conjectural.

In modern textbooks a reference point is assumed 
relative to which some point of interest is then given, 
in (1): x 0 and x. x  is the location of Euler’s group of 
planes. It is then argued that the cross product /  x  
(a? -  x 0) of all forces /  acting on the point x  which 
is contained in all planes n , and the distance x -  x 0 
is the rotational momentum of the “part” x  (1). From 
this description it is not at all clear whether x  -  x Q is 
a radius of a solid, and x 0 qualifies as the center of 
mass of a thermodynamic system or a discrete body, 
or a distance in free space between the origin x 0 of 
some coordinate system, and x  which is the location 
of a “part”, i. e. one of n parts of a kinetic system, 
akin to a real gas. In the first case the body or system 
would spin about itself, in the second it would spin 
about some external point. Surely the difference is 
not without physical significance, yet the textbooks 
are surprisingly vague here. However, it has never 
been claimed that x -  x 0 vanishes during Cauchy’s 
continuity approach, therefore it is invariant. Since 
a surface enveloping x 0 and passing through x  can 
have only one single orientation in x, but x  is the point 
of convergence of Cauchy’s continuity approach and 
the location of Euler’s group of planes, the distance
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x  -  x 0 is indeed just the purely geometric location 
vector of point x  with respect to some coordinate 
system in Euclidean space, but not a physically rele­
vant term such as Newton’s radius r  which, after all, 
can act as a lever; x  cannot be used in the statement 
of the rotational momentum. It is done anyway (1).

The cross products f  x n  and /  x (x -  cc0) where 
f  = f ( n )  have the same birth defect; both |n | and 
\x -  * 0| are invariant, hence if they are taken in lieu 
of r  in the cross product with all possible f  acting 
on x,  their magnitude invariance implies a specific 
shape, that of a sphere. A spherical body of solid is 
in rotational equilibrium with all external force fields 
that have orthorhombic or higher symmetry; for lower 
symmetries the geometric properties of the field and 
the system shape must cancel one another. There­
fore, the assertion by both Euler and Cauchy that 
stress is orthogonal by nature, is based on Euler’s in­
correct reinterpretation of Newton’s definition of the 
rotational momentum, and amounts to the implicit 
assumption of a spherical system shape. The orthog­
onality condition is indeed equivalent to an equilib­
rium condition -  for Laplace problems. Deformation 
of solids is not one of them.

The lack of generality in the Euler-Cauchy ap­
proach to stress has the effect of a hidden bound­
ary condition. Current continuum mechanics often 
appears to deliver useful predictions in those cases 
where the experimental boundary conditions are suf­
ficiently highly symmetric to be in accordance with 
the unrecognized assumption of a spherical shape of 
the system. It fails systematically for all problems 
involving simple shear.

5. What is Stress?

Stress is said to be “a system of forces” [2], but 
it is not a force field. Euler saw the necessity to de­
scribe vectors with a direction as a function of another 
direction. Adapting Newton’s definition of pressure 
(P  =  \ f \ / A )  to his purposes, he conceived the cut 
model: a group of planes pass through the point Q in 
space for which the state of stress is to be described; 
the orientation of a plane is given by a unit vector 
emanating from Q in the plane, and the force vectors 
vary as a function of orientation of the plane.

This concept must be seen in its historical context. 
Euler did not know vector fields yet. He published 
in 1776 and passed on in 1783. Lagrange derived 
the first vector field in the following year. Pressure

became recognized as a thermodynamic state function
-  and thus a scalar by definition -  in the early 19th 
century. Looking around in physics, this “system of 
forces” is unique, and used exclusively in continuum 
mechanics because Euler’s plane orientation vector 
n  is not identical to n  in the LHS of the divergence 
theorem (5): although they both are surface-normal 
unit vectors, Gauss’s surface is closed whereas Euler’s 
planes are free. Work is not of much concern; the basis 
of the understanding are the equation of motion and 
the equation of continuity, whence it is concluded that 
for a volume-neutral deformation diver = 0 [2:100- 
101, his Eqs. (3) and (10) ignoring body forces]. This 
statement is the most obvious evidence that the Euler- 
Cauchy theory of stress is wrong.

In modem terms, stress is the elastic potential, it is 
the work done during loading (a scalar), and its spatial 
properties are represented by a force vector field. An 
unloaded body is in its zero potential state; during 
loading, work is done by external forces upon the 
system, and that work is stored as potential to reverse 
the change of the energetic state. Since work has been 
done to the effect that a change of state occurred, the 
divergence of stress cannot be zero. It is telling that the 
term “elastic potential” is almost completely missing 
in most standard continuum mechanics textbooks.

One has to be careful when reading the literature 
on theoretical continuum mechanics because some 
terms have a meaning very different from that in other 
disciplines of physics. Throughout thermodynamics, 
the all-pervading question is the equilibrium between 
system and surrounding. The system is usually a sub­
volume of mass within a larger continuum of mass; 
forces acting upon the system are understood to be ex­
ternal forces, and forces exerted by the system upon 
the surrounding are then internal forces. In contrast, 
continuum mechanics does not know the concept of 
a system of mass. Here, internal forces are forces act­
ing across a free surface inside a solid, and they may 
be balanced by each other in the way intended by 
Eringen [12:95], i.e. the understanding of the equi­
librium presupposes the validity of the Cauchy lemma 
(below). It is not implied that the body or a volume 
element of it is a thermodynamic system, nor is the 
interface across which internal forces inside a solid 
act, thought to be the boundary of a thermodynamic 
system; if so, it would necessarily be a closed sur­
face, with very different mathematical implications. 
The difference between inside and outside, system 
and surrounding in thermodynamics (in accordance
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with the divergence theorem) does not exist in con­
tinuum mechanics: there, external forces act upon the 
surface of the body as a whole, and the internal forces 
are thought to be their continuation into the interior 
of the body. From the entire theoretical structure of 
continuum mechanics, forces exerted by a subvol­
ume upon its surrounding and forces exerted by the 
surrounding upon the system cannot be recognized 
as different in origin: continuum mechanics does not 
ask for the source of the forces (the potential), hence 
it does not find any. The concept of a thermodynamic 
system and the Cauchy stress are incompatible with 
one another.

6. Hooke ’s Law

The mathematical structure of Hooke’s law greatly 
influenced the thinking about deformation. However,
1. Hooke’s law is a phenomenological law, 2. it is a 
seriously flawed misconception to the effect that it 
has the wrong unit.

1. The phenomenological character is evident since 
the “linear” stress-strain relation implied by it is long 
known to be something of an idealization; whether it 
is an idealization towards a physical ideal, in analogy 
to the ideal gas, or towards the observer’s personal 
prejudices remains yet to be openly discussed. In­
stead, one speaks of a Hookean body if the material 
behaves according to Hooke’s law; other definitions 
of bodies associated with certain types of behavior 
are also known. The circular reasoning should be ob­
vious: because it is a Hookean body, Hooke’s law 
is valid; in other cases we take other laws. In many 
books on the basics of deformation theory one can 
find caveats to the effect that the theory is applicable 
only to small strains; in other words, the theory is 
known to be wrong, but at small strains the error does 
not matter.

Commonly it is assumed that the (Hookean or 
other) body is “incompressible”, meaning that it can 
be deformed at will, but its volume and mass den­
sity remains constant. (The ideal material ratios, e. g., 
Poisson’s ratio or the Lame constants, are contingent 
on volume constancy.) Once this line of thought has 
been accepted, it is hard to ask why on earth the 
volume indeed does remain constant; and worse, an 
observed change of volume will then be perceived as 
an anomaly. The mistake in this line of thinking is 
subtle. The material is thus said to be incompressible 
whereas it is the process that is volume-constant.

A proper approach should not start with implicit 
boundary conditions that please the expectations, but 
one should arrive at results such as volume constancy 
by deducing them from a proper approach. If a ma­
terial does not behave according to expectations, for 
example because it expands, it is called dilatant. Thus 
if the material is supposed to be dilatant, the phe­
nomenon of dilatancy can no longer be perceived as 
a function of the experimental setup. The concept of 
a dilatant material is the phenomenological flipside 
to the incompressible body. Fact is, dilatancy is reg­
ularly observed in elastic simple shear [11], i. e. as a 
function of the boundary conditions and independent 
of the material.

If a bar is stretched in x, it is observed that it will 
attenuate in y and 2. It could be concluded: provided 
that the volume is constant, and if the bar is stretched 
in x, it must shorten by this and this amount in y and
2. The result is Poisson’s ratio which is again phe­
nomenological: it explains an observation with itself. 
The physical line of thought should be: if work is 
done by the surrounding on the bar in x, changes in 
y and 2 are nevertheless observed, therefore work is 
done by the system on the surrounding in these direc­
tions. How come? (The reason is the principle of least 
work. A stretching in x without attenuation in y and 
2: would result in a volume change, which is a much 
larger change of state per stretching increment.) This 
approach will lead towards far better understanding 
of deformation than Poisson’s ratio or the Lame con­
stants, and, by the way, the presupposition of volume 
invariance is no longer necessary.

2. Hooke wrote: ut tensio sic vis. The question is 
what was meant by vis at a time when force and energy 
were not yet conceptually separated. Vis is commonly 
translated as force, but Bernoulli’s vis viva and vis 
mortua are today’s kinetic and potential energies of 
classical mechanics (the latter terms were introduced 
by Thomas Young in 1787). -  Newton’s definition 
of a force is /  = ma.  If Z  is the potential energy 
of conservative mechanics, dZ/dxi  = /* [4]. The 
force derived from a thermodynamic potential U is 
f i = dU/dxi  [1:152]. Hooke’s law in its simplest form 
is /  = cAl/lo = cs, where c is the spring constant or 
Young’s modulus, lo the length of an unloaded bar or 
spring, and £ the strain (whereby tensio is thus trans­
lated as lengthening). Hooke’s law is therefore some 
kind of definition of a force, called a material law.

But why a forcel Newton’s force refers to a ve­
locity potential [4]. The two others are definitions of
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force fields derived from energetic potentials, i. e. en­
ergy fluxes as a function of direction. Furthermore, 
Newton’s work is force times distance w = f  x,  and 
the thermodynamic definition of mechanical work is 
d w = d U = —P d V  (if d q = 0, d w is an exact dif­
ferential). A force is the cause; the displacement or 
the volume change is the effect. Work is the energy 
spent in achieving that effect. A change of length is 
an effect, so Hooke’s law evidently is a first attempt to 
quantify the work done in stretching the spring, and it 
should have the unit Joule. The missing energetic term 
must then be the force which is applied. Given that a 
change of state is involved, and that the work func­
tion for such a change can only be logarithmic (see 
below), a preliminary choice for a one-dimensional 
law should be d U = f d  I, in analogy to P d  V.

We are left to find out what is meant by tensio. 
If Newton’s definition of work gives any hints, w is 
the product of the applied force and the displacement 
caused by it. Both Newtonian work and thermody­
namic work are path-independent. But whereas New­
tonian work is path-independent in Euclidean space -  
the state of the entire free-space system of bodies is, 
after all, invariant in classical mechanics -  the ther­
modynamic work is path-independent in P V - space, 
which is the energy space: starting from some refer­
ence state, a particular final state always requires the 
same amount of work, regardless of the path taken in 
that space, provided the process is reversible.

Newton’s work definition clearly indicates that the 
displacement is the quantity of interest. In current 
continuum mechanics the fundamental relation of im­
portance is that of stress to strain, i. e. the mere change 
of shape, due to Lagrange’s interpretation of Hooke. 
The requirement of path-independence indeed seems 
to support the classical interpretation since strain is 
path-independent whereas the displacement field ap­
pears to describe a path -  in Euclidean space, but not 
necessarily in energy space. But a finite displacement 
can also be reached through an infinite number of 
displacement histories, and the requirement that the 
energetics of the final state be independent of the de­
formation history may therefore also be made with 
regard to the final state of displacement, rather than 
the state of strain. Whether strain or displacement 
is the energetically relevant term is best decided by 
looking at the energy used because the work done 
defines the state which the system acquires. The dif­
ference is only apparent if the properties of strain and 
displacement differ; whereas strain is by definition an

orthogonal tensor, the displacement field is a vector 
field that may or may not be orthogonal. If it can be 
shown that the energetics of strain are independent 
of the properties of the finite displacement field, the 
significance of the classical stress-strain relation is 
supported. If it can be shown that identical states of 
strain require different amounts of work as a function 
of the finite displacement field chosen, the physical 
relevance of the stress-strain relation is refuted.

The experimental record is clear. It is long known 
that elastic simple shear (non-orthogonal displace­
ment) requires more energy than pure shear (orthog­
onal) in order to achieve the same total strain [11]. 
Even in the plastic field the energetics of simple and 
pure shear vary systematically and independent of the 
material [13; pers. comm. 1989], although here the 
energetics of simple shear are consistently (and sub­
stantially) lower than those of pure shear. All these 
differences should not exist if the stress-strain relation 
bore any significance to the energetics of deformation, 
and they cannot be predicted by the Euler-Cauchy ap­
proach.

7. Cauchy ’s Continuity Approach

Cauchy ventured to put the cut model on a more 
solid mathematical basis. He assumed a volume ele­
ment within a larger volume of solid or fluid; forces 
act upon its surfaces. He then made the assumption 
that the ratio \ f \ /A  should be scale-independent. By 
letting the faces of the volume element approach a 
point of convergence by means of a limit operation 
with respect to volume (similar to those in differen­
tial calculus), he then assumed that the forces per area 
should reach a finite value, such that in the moment 
of convergence three goals are achieved: first, that 
the state of stress be described through the Cauchy 
lemma [3]

= - / * ,  (V)

second, that the continuum of points is reached, and 
third, that the shape of the original volume element 
vanishes. All three assumptions imply that the volume 
element vanishes identically.

The hidden assumptions in this line of thought are: 
that the continuum of points is the key to understand­
ing of deformation; that the limit of the limit operation 
exists; that the force magnitude | / |  is independent of 
scale = the magnitude of the volume element; that
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the equilibrium conditions are unaffected by the limit 
operation, and that the shape of the volume element 
vanishes. All these assumptions are interrelated, and 
they all violate the same principle, that of proportion­
ality of mass and potential which is the fundamental 
existence theorem of the theory of potentials.

Behind the concept of a continuum of points is the 
idea of the point source in potential theory. A point 
source is a body of finite extension and mass. The 
mass of the body is thought to be concentrated in one 
point such that its mass is preserved, but its volume 
is considered to be zero for simplicity. This concept 
causes no problems in many cases. The condition for 
considering bodies as point sources (e. g., in gravity) 
is that the bodies in a system (such as a planetary sys­
tem) are discrete bodies (that it is possible to envelop 
them with a surface that does not pass through mass), 
that the bodies do not interact mechanically, and that 
the distance between the point of interest outside a 
body and the body itself is so large that its shape no 
longer has an effect.

The principle that is maintained in the point source 
concept is the proportionality of potential and mass. 
Consider a planet in free space causing a gravitational 
force field in the region around it. We consider the flux 
out of a region that contains the source (<p ^  0). The 
potential is then zero at infinity (the zero potential 
distance is infinite; [1:53, 15]); at any smaller scale 
there will be a flux through the boundaries of the 
region. The flux is always proportional to the mag­
nitude of the source and to the mass in the region, 
but independent of the volume of the region which 
is empty except for the relatively small part of it oc­
cupied by the planet. Thus it follows that, since the 
region contains mass, in

J  f  ■ nd A  = J  V f d  V = tp = const (8)

the RHS integral is independent of the limits of inte­
gration of V.  Thus f  f  n d  A must also be constant. 
Thus I/I oc A ~ l , or, in terms of the radius r of the re­
gion, I/I oar 2. This is Newton’s law of gravitation.

However, the Cauchy continuity approach consid­
ers a subvolume in a larger region continuously filled 
with mass. Instead of a point source we have a dis­
tributed source [1, Chapt. 2.8 and Chapt. 6.3, leading 
to the Poisson Eqn.]. By the principle of proportion­
ality of mass and potential -  and, for simplicity, as­
suming homogeneous mass distribution at the scale

considered -  it follows that the charge is proportional 
to the volume, p  oc V; it follows that V f  is a con­
stant. Since the RHS is proportional to V  oc r 3, for 
the equality of RHS and LHS to hold it follows that, 
since A oc x2, it is concluded that | / |  a  x = r, or 
[1:19, 14]

I / I7-7 = const. (9)
M

Thus within a larger continuum of mass, the mag­
nitude of the forces exerted by the system upon the 
surrounding is a function of scale. They must vanish 
together with r.

The result is in perfect agreement with the funda­
mental existence theorem of potential theory: let p  
be some function /  of the point Q within the region
V in space. The integral f  f(Q)d V = p  is conver­
gent only if it vanishes with r  [1:147]. The Cauchy 
lemma above assumes that a finite value is reached as
V vanishes; however, the limit does not exist [14].

8. The Notation of Planes in Space

A vector has a magnitude and a direction. The con­
cept of vectors can be applied only if a minimum set 
of requirements are met to ensure that the correlation 
of vectors and objects is unique -  that no two objects 
can be assigned the same notation, that no two nota­
tions apply to the same object, and that no object is 
without notation -  and to ensure that algebraic mini­
mum logic is observed. A full set of conditions which 
together comprise the definition of a vector space, 
can be found in [4:5, 16:131]. Of interest here are the 
conditions that any object u  and its negative - u  must 
be two different objects; that the object 0 exists such 
that u -  u = 0; and that the scalar multiplication ku  
is a meaningful operation such that the magnitude of 
ku is the product of the scalars k and u = |tt|, and 
if k = 0, ku =  0. The null vector 0 is said to be a 
zero vector quantity which has neither magnitude nor 
direction.

The commonly used notation for planes in space 
is known as Hesse notation: starting from a reference 
point Q, any point P  with position vector p  = Q —► P  
indicates a plane which contains the point P  such 
that it is perpendicular to p. This convention serves 
to describe all planes in space except those that pass 
through Q because for these planes the position vector 
is the null vector. That singularity is common to all
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coordinate systems. The Hesse notation satisfies the 
requirements for vector spaces.

Euler’s cut model consists of a group of planes 
passing through a point Q. Their orientation is given 
by a vector n  emanating from Q; n  is by conven­
tion a unit vector. This notation serves to describe 
planes passing through Q exclusively; other planes 
in space cannot be described. Some sources therefore 
introduce an auxiliary term [e in 3:176] such that the 
vector eu  indicates other planes with the orientation 
of n,  and e indicating the minimum distance of the 
plane to Q. This is identical to the Hesse notation 
except that if e = 0, en  = n  4  0.

The two notations cannot be transformed into one 
another, thus they are not to be used simultaneously. 
Euler’s notation does not satisfy the minimum re­
quirements for vector spaces. If Gurtin’s e = 0, the 
resulting vector en  must be a null vector 0. However, 
the object 0 does not exist in Euler’s notation; the 
notations n  and - n  describe the identical object, and 
the operation n  -  n  is meaningless.

9. The Role of Shape in Mechanics

In discrete mechanics the shape of a body is of 
paramount importance for the equilibrium conditions 
because of the rotational momentum /  x  r. Depend­
ing on the shape of the body, the particular form of 
the equilibrium may differ vastly from others. The 
conclusion drawn in the Euler-Cauchy theory is that 
shape is irrelevant in continuum mechanics since there 
is no discernible shape to be observed. In the process 
of Cauchy’s continuity approach the shape is thought 
to vanish identically.

Consider a body with given shape. Taking its center 
of gravity as the origin for a coordinate set, the shape is 
defined as some function of r(0), and the forces acting 
on the body may also be written as where
the point indicated by r  is the point of action of / .  
The condition of rotational equilibrium is then f  f  x  
rdO = 0, according to Newton. (Letting r  vanish 
without changing f  would result in a trivial solution, 
and it would make the ratio | / | / | r |  arbitrary.) If a limit 
operation with respect to r  is performed, a particular 
cross product | /  x r\ will naturally approach zero 
faster than | r  | alone, but so does /  •r,an d  ( | /  x r  |2 + 
| /  • r | 2) */2 = \ f\ \r \ is always proportional to both f  
and r. Since | / |  a  |r | (9), the ratio | /  x r \ / f  ■ r  is 
scale-independent; the rotational momentum cannot 
vanish, so the shape continues to exist as long as r 4  0.

In the above example, r {6) marks a point on the in­
terface between a body of solid V  and its surrounding. 
That is, mass and potential of the body in the direc­
tion 6 extend up to this point in the unloaded state, 
and no further. The surrounding may be free space or 
the continuum of mass of which V  is a subregion, r 
can be changed due to deformation, i. e. in the loaded 
state. |t*o| is therefore the zero potential distance so 
which is an intrinsic geometric property of any poten­
tial problem [1:53]. It is a characteristic distance in 
Euclidean space which must be determined depend­
ing on the nature of the problem; s may have infinite 
or finite length, but it cannot be zero. If s is finite -  by 
nature or by choice -  it is by convention set to unit 
magnitude. A change of so implies that a non-zero 
potential state is considered. Cauchy’s limit opera­
tion is in effect an attempt to let that distance vanish; 
this is incompatible with the principles of potential 
theory and, in fact, with Hooke’s law which indeed 
does contain the zero potential distance -  the length 
of the spring.

In a continuum of mass, there are no easily dis­
cernible boundary conditions for the length of the 
zero potential distance. This is not to imply that s is 
zero; rather it is to be assumed to have unit magnitude 
[1:63] unless other constraints are found. The surface 
defined by all r 0 with magnitude so is then the surface 
of the thermodynamic system which in the simplest 
case has spherical shape. The point will be discussed 
again in another paper [17].

The Theory of Potentials

1. Properties of the Divergence Theorem

The divergence theorem [1, Chapt. 4 to 6; 15]

J  f n d A  = J  f (Q)  dV = j v - f d v  = <p(Q)(\0)

considers fluxes crossing the closed boundary A of 
a chosen region V  in Euclidean space. Gauss’s theo­
rem states that the flux crossing the boundaries of V 
equals the divergence of the system, integrated over 
its volume, tp is the charge of V  as a function of loca­
tion Q in space. If r  is the position vector of a point 
P  relative to Q, f V  f d r  = f  is the force at P  as 
a function of the potential at Q. In terms of linear 
algebra, if V2U = V f  = F, F r  = /  where V -f  = F
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is the field property tensor. It follows that | / |  = 0 if r  
is a zero vector [ 1:122, 135].

The physical interpretation of the divergence de­
pends on the nature of fluxes. If mass fluxes are 
observed, the condition <p = 0 is an excellent mass 
conservation law. If gravity or electric charges are 
considered, the divergence is the source density, the 
attraction of the gravitational or electric potential per 
mass, and ip is the gravitational or electric charge of 
the system under consideration with given magnitude. 
If the energetic state of a system is discussed, the di­
vergence is a measure of the work done on the system 
per mass [1:48-52], and p  = 0 implies that the en­
ergetic state is invariant. All conservative processes 
must fulfil that condition; their energy conservation 
law is Bernoulli’s law, f7kin + Upot = const, which 
translates into the Laplace equation V2U = 0. The 
energy conservation law for non-conservative pro­
cesses is the first law of thermodynamics, d U = d w 
+ d q (Poisson equation: V2U = p  ^  0). Again two 
groups must be distinguished: the reversible and the 
irreversible class. General solutions for the Poisson 
equation exist only for reversible processes, e. g. the 
Helmholtz equation.

Gauss’s theorem is an explicit statement of the as­
sumption that only normal forces contribute to the 
total divergence. This assumption cannot be verified 
by considering mathematics, but only by inspecting 
the nature of the physical problem under discussion. 
If all parts of a system can be moved freely past one 
another, the assumption holds, and the trace of the 
tensor V2U =V f  is a useful term. With regard to 
forces causing elastic deformation of a solid body, it 
is self-evident that shear forces do work which is not 
included in V-f,  hence the above equation needs to 
be amended, with the consequence that simple ten­
sor mathematics becomes insufficient for the proper 
representation of the process. This subject will be 
discussed in a subsequent paper.

Usually precaution must be taken that the region V 
is convex and simply connected, and that its bound­
ary A is free of cusps. Furthermore, in the form 
given above, A is a closed surface that completely 
envelops Q. n  is commonly understood to be a sur­
face-normal unit vector. However, the first condition 
makes it possible to understand the fluxes not as a 
function of a particular point on A, but as a function 
of a direction n  relative to Q since for every direc­
tion there is one and only one surface point P.  If the 
orientation of the surface-normal vector at P  differs

from that of the direction vector r(P) / \ r \ ,  the rela­
tion must still be a transformation the physical effect 
of which cancels. Thus the relation of surface orien­
tation to orientation of flux at P  is not as important 
than it might look at first.

This observation puts the significance of the orien­
tation of the surface in Euler’s cut model in perspec­
tive. Furthermore, since V  is a non-zero region, the 
radius exists, and Newton’s definitions of the normal 
and rotational momentum, f  ■ r  and f  x r,  can be 
applied. Euler’s cut model does not know a radius r  = 
Q —> P ; the attempt to use the surface orientation 
vector in the equilibrium conditions, a common prac­
tice in continuum mechanics [2:101 ff.], is a violation 
of Newton’s definitions. Finally, since Euler believed 
stress to be a form of pressure, he adopted Newton’s 
definition “force per unit area”. However, the more 
fundamental definition is the one provided by ther­
modynamics, P  = dU/dV,  or P  = U /V  in integrated 
form which is the energy density. The cut model rep­
resents a group of free surfaces intersecting in Q; to 
such a group of planes the divergence theorem does 
not apply because the model fails to recognize point 
sources at the point of intersection. Consider a point 
source of heat located at Q, enveloped by A. The di­
vergence theorem indicates that ip 4  0, hence there 
is a non-zero flux of heat out of the system; if equi­
librium exists, an independent external flux of similar 
magnitude must exist such that <psyst + ipSUTT = 0. Con­
sider the free planes A of the cut model intersecting 
at Q : the heat source is within the planes. Fluxes to 
either side of any plane have equal magnitude and op­
posite sign, hence the conclusion that p  = 0 appears 
to be permissible; this is incorrect.

The integral in the divergence theorem is conver­
gent if it vanishes with the maximum chord of V  
[1:147]. The limit cannot reach a finite value as is 
assumed in the Cauchy lemma [14].

2. Definition of the Thermodynamic System

The principle on which the theory of potentials is 
based, is the proportionality of mass m  and potential 
U in a given state. If d m  is a mass differential and 
d V  is its volume, d m/dV  = p, the density of the 
inertial mass, and f  p d V  = m  is the inertial mass of 
the system, the size of which is defined by the limits 
of integration.

With regard to the exterior of the system, the 
potential within it can be regarded to be located at the
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system’s center of mass [1:7]. With regard to the inte­
rior, it is not possible to dissolve the distributed mass 
into a continuum of points with point sources (which 
was the intent of the Cauchy continuity approach); 
since mass is a variable if the region considered van­
ishes, the potential must vanish, too. A region continu­
ously filled with mass is known as a distributed source 
[1, Chapt. 2.8 and Chapt. 6.3]; the classical example 
is that of gravity within planets. Given homogeneous 
mass distribution, the gravitational force exerted by a 
subregion of mass within a planet is proportional to its 
radius /  a  r  [1:19]. It is in the nature of gravity that 
the gravitational potential per unit mass is invariant; 
electrical, or thermodynamic potentials may vary.

The thermodynamic density is d n / d V ,  hence 
f  d n / d V  d V  = n where n is the mass measured 
in mol. Therefore the system has a spatial extension 
and a shape. The limits of integration may be chosen 
to fit the desired purposes, thus arriving at the poten­
tial per mol, per unit volume, or per unit radius, times 
a proportionality constant. As above, the thermody­
namic potential is proportional to mass, but a system 
may be considered to be in its zero potential state at 
some standard state which is subject to convention. It 
follows from the work function that thermodynamic 
potentials are logarithmic [1:53, 1:63], thus so is fi­
nite; the distance term that is characteristic of a ther­
modynamic system in its standard state is the radius 
which is therefore assigned unit magnitude, ro = 1. 
Unless there is evidence to the contrary, it is safe to 
assume that the shape of the system is that of a sphere 
such that the surface/volume ratio is at its minimum.

An energetic differential can be imagined in two 
ways: if a limit is taken with respect to mass n which 
is proportional to its potential U, the mass differential 
d n oc d U. At constant state, a change of U at con­
stant conditions is therefore equivalent to a change of 
mass; hence the definition of pressure may be given 
as P  = dU/dV  or in integrated form, P  = U/V,  but 
note that mass is a variable in the integration, and 
measured in terms of V. An entirely different mean­
ing of d U is implied if the potential U of a given 
finite, constant amount of mass is changed by an in­
finitesimal amount d U, resulting in a change of state. 
In the first case the principle of conservation of mass 
and energy are equivalent; in the second case they are 
not. Cauchy’s limit operation known as the continuity 
approach considers the d U of the first kind, following 
the equation of motion in which the variable of choice 
is the inertial mass. But because elastic deformation

is a change of state, the latter view must be taken. 
Conservation of mass and energy must be considered 
separately if both mass and energy are independent 
variables. However, the standard assumption in equi­
librium thermodynamics that a system be closed with 
respect to mass, greatly simplifies the problem.

3. Thermodynamic Approach in Vector Form

Any change of state must be described by means 
of a state function. Here, isotropic loading of an ideal 
gas is explained in terms of vector fields instead of 
scalars in simplified form. PV  = nRT  is assumed to 
be the correct state function for the material. Let the 
equation of state be reduced to Boyle’s law P V  = c. 
The work done due to a change of volume is found 
by differentiating,

P d V  + V d P  = 0, d P  = - P ^ - ,  (11) 

integrate and sort terms,

( 12)

The work done is found from d w = —P d V  by sub­
stituting c /V  for P ,

j f d V  V\
d w  =  —c /  — -  = — c ln — .

J V  V0
(13)

Since P  and V are scalars, Boyle’s law is isotropic. 
It may be understood not only as the product of two 
state functions, but also as the product of two vector 
fields, a radius field r  and a force field f ,  both of 
which are radial. If an area term is cancelled, the state 
function is transformed

f
P V  = —► —rA  = —► f r  = const 

A J
(14)

without changing the nature of Boyle’s law (the 
unit is still the Joule). Thus, PdV-work is equiv­
alent to /dr-w ork , and U = P V  is equivalent to 
U = f r = | / | | r |  = ( | /  x r |2 + | / - r | 2) 1/2, normalized 
per unit mass times a proportionality constant to fit 
the condition r = 1.

A vector field is derived from a scalar quantity by 
differentiation with respect to the coordinates [1:52, 
1:152]. A force field is derived from a potential U 
which is characteristic for the energetic state at a given
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point Q in space where the field is rooted. The direc­
tional flux fi = dU/dxi  is the force field; its spatial 
properties are given by the flux field property tensor 
F = d2U/dxidxj = df l/dxj .  For a radial field, F = 
Ci I. The force /  as a function of Q is given by

/ = F r = E  /  s r dXj’ (15). J r . O X j

where r  is the position vector of the point of action of 
the force /  on the surface of the system relative to Q. 
By the same line of argument as above one can start 
with f r  = c and arrive at

—J -  = — In — (16)
Jo r0

and

f d w = - c  f — = —cln —. (17)
J J r r0

In the present model case all forces are normal, thus 
f r  = const is only the dot product of /  and r  which 
is a scalar. Integrating the result over the surface of 
the system will yield the same result as above, times 
a proportionality constant. In this example, /  may be 
either the outward-directed field / int exerted by the 
system at the surrounding, or the inward-directed field 
/ ext exerted by the surrounding at the system. Since a 
system subjected to an external load interacts with its 
surrounding, P ext = - P int translates into / ext = - / int; 
both equations are forms of the equilibrium condition 
of system and surrounding

div /ext + div/int = 0. (18)

In the above example, where an ideal gas was used, 
all forces are normal forces since the state of loading 
was said to be isotropic, and shear forces do not exist.

Conclusion

In many years of discussion I have met numerous 
people who confessed to have their doubts with regard 
to the present continuum mechanics theory. Typical 
was the reaction of a researcher who freely conceded
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