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The systematics of energetic terms as they aréntangontinuum mechanics deviate seriously from
the standard doctrine in physics, resulting in @fqaind misconception. It is demonstrated that the
First Law of Thermodynamics has been routinelynterpreted in a sense that would make it
subordinate to Bernoulli's energy conservation IBwoof is given to the effect that the Cauchy stres
tensor does not exist. Furthermore, it is shown thea attempt by Gibbs to find a thermodynamic
understanding for elastic deformation does notigefitly account for all the energetic propertiés o

such a process.
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1. Introduction

Late in his life, Kestihobserved, “The subject of ‘conventional’ thermoalyrics, as it is
taught more or less correctly, ... and the subgdctolid mechanics, often taught as
strength of materials, have developed largely isdéepntly of each other. Although both,
ultimately, allow engineers to use them for desagml testing with rather satisfactory
results, they are not consistent with each othbeyTcertainly failed to converge to this
day. In a situation like this it is quite naturalthink that, perhaps, the foundations of both
disciplines are at fault.” It is strange to seetthame people have indeed noticed the
profound chasm between continuum mechanics andhtdthmamics, and still they were
clueless as to how this contrast came about, orihosuld be closed.

By its mathematical structure and physical outlime thermodynamic theory is in
line with potential theory: it considers changestloé energetic state, hence during a
thermodynamic process there are energetic fluxesele® system and surrounding, thus
an approach must start mathematically with a Paissquation,J°U = ¢, as BorA
requested for all of continuum physics. There iy ome exception. Continuum mechanics
was founded long before the necessity to distifguegstem and surrounding was
recognized, before it was realized that NewtoniamkvandPdV-work are very different
things, and even before energy and force were Iglemparated as different entities.
Hence, the mathematical structure of continuum reicls is conservative; in effect, the
quaint concept of force conservation lavihas survived until today from an era when it
was not known yet that the energy of a system eaa Yariable. For Euler in the late™8
century it made perfect sense to postulate that=0 (0 = stress tensor); today the
condition is recognized as one form of the Laplaoadition which characterizes the
process as conservative, which is against the eafuain elastic deformation.



The assumptions made in the derivation of the Bawtress tensor have been
shown to be incompatible with potential thedryhe continuum mechanics theory has
been critically reviewed, and the first steps ta¥gaa new approach have been outlihéd.
is this author’s firm opinion that continuum meckanshould have been founded again
150 years ago, right after the discovery of thestHiraw of Thermodynamics when the
systematics of energetic terms became completelywknunfortunately this has not been
done. Instead, the difference between conservatidenon-conservative physics, the most
profound and fundamental difference among the etasd physical processes, was so
thoroughly blurred in material science that uphis tlay people have serious difficulties to
recognize it — because they have been trainedorgdd it. Plainly, an equation of motion
is only and exclusively the proper first step iattheory if the process under discussion is
conservative, involving the mechanicsrofliscrete bodies in free space, which does not
change the total energy of the systenmdfodies; whereas a nonconservative process, by
definition a change of state, must be approacheanbgquation of state. By nature, all of
continuum physics falls into the latter categongluding elasticity. The rather profound
physical differences between conservative Newtoniaghanics and thermodynamics are
listed in Table 1.

In the first part of this communication | give arample to demonstrate that the
systematics of energetic terms in continuum medsaisiat variance with modern physics.
In the second part | wish to demonstrate that everan who is rightfully counted among
the founding fathers of modern thermodynamics, ladhard time to free himself
completely from the spell cast over the™@entury by Euler and his conservative
concepts.

Table 1

Newtonian M echanics Thermodynamics
governing equation equation of motionf = ma equation of statPV = nRT
condition of equilibrium Newton’s Third Law: equlium of equilibrium of system and sur-

two two colliding bodies: f; +f, =0 rounding:Psys + Psun = 0
definition of work w=f[ always linear Jdw = JPdV always spatial
energy conservation law Bernouli, + Eyx = const First Law:dU = dw + dg
purpose of theory understanding of work derithin a understanding of energetic

system against inertia, acceleration wpréhanges of state, work done
upona system against its
internal energy

path independence of work in Euclidean space P\irspace

reference potential velocity potential thermodynaselectromagnetig
potentials

time as a parameter indispensable time-independent

application physics of discrete bodies in free spagc physics of continuously

distributed mass

Is it at all possible to understand elastic betvags a linear physical process? The
idea comes from HooRend his experiments. In modern light the rangisfdata is so
small that not much can be concluded from themgpixd¢hat the work function is
continuous. In the technical application the lavioisg known to be insufficient. Also, a



proper discussion of the boundary conditions isaligumissing in the statement of the law.
It does matter, however, if the displacement typthat of plane pure shear, plane simple
shear, or axial shortening; whether the referenassnis part of a larger continuum of
solid, or whether free surfaces are nearby, suclioms bar; and even its shape is
important. Furthermore, whether a pattern of daiatp follows a straight line, a circle, a
sine function or a power law cannot in general eeided from the phenomenology of the
graph — consider the shape of the Earth at smalk sebut only and exclusively from the
theoretical context. Elastic deformation is a clamg state; all thermodynamic work
functions are logarithmic, hence elasticity mustidgarithmic. The difference between a
linear law and a logarithmic law may not matter q@dv@enologically, especially within the
very short range that is available to reversibéstid behavior before failure. However, it
has the most profound consequences for the matleainstructure of the theory which,
after all, serves as the guide in uncharted thealgerrane. If it is wrong, it leads astray.

2. Systematics of Energetic Termsin Physics

From the systematics of energetic terms as theyderstood today (Fig.1), the sum of
the kinetic energy and the potential energy discrete bodies give thantire mechanical
energyof a kinetic system,

Ein + Epot = H = const (1)
this sum is known as Bernoulli’s law, the energgsmrvation law of conservative physics.
Eo.o represents all potentials that may be observed,geavity; in the context here the
emphasis is on the electromagnetic potentials efatoms, since the bonds in a solid are
electromagnetic in nature. Whereas the transf&matic energy from one body to another
requires bodily contact, electromagnetic forcesoaetr a distance. A force in the sense of
the equation of motioh=ma is only one single vector whereas electromagrettes are
always field forces; thus the two types of forcéfed profoundly in their physical, and
mathematical properties.

By convention, the notatiohl is used in mechanics if processes are considered
where eqgn.1l is observed, ild.= const If the RHS is a variable, however, the common
notation differs since

H=U 2
is theinternal energyof thermodynamics in the standard state. Any chafghe staté),
requires energetic fluxes between system and suling, either in form of workiw or in
form of heatdq; hence thehange of states given by

dU =dw + dg 3
which is the First Law of Thermodynamics, the egergonservation law for
nonconservative processes. The changed statesigithen byU, + dU = Uy + dw + dg,
It is not possible to understand the mechanicabbieh of solids in terms of = ma.
Clausiu§ and Griineiséridentified the forces effective within and withausolid

%(ZmF+er (r))= PV (42)



where the first term LHS contains the kinetic eres@f the oscillating atomsn(= atomic
mass,v = velocity); the second term contains the prodfcthe distance between two
atoms and the forcdsacting between theny, is the molar volume ané the pressure to
which the solid is subjected. Eqn.4a is identicaégn.1. Clausilsequated the first term
LHS (kinetic energy) with heat; for adiabatic meaical loading it is without con-
sequences in solids at temperatures below thesaffulimit, and subsequently ignored.
Griineisefh expanded the second term LHS into the potentialtdihe attracting forceds
and the potential due to the repulsive forkda a solid. In the unloaded state the RHS is
zero, and since a solid in a vacuum is in equiliorivith itself, eqn.4a reduces to

(Erty+Xif,)=0 (4b)
where bothf; andf, are electromagnetic in nature, ands the zero potential distance.
These are the forces with which fordgg due to external loading (eqn.4a when RHS)
must interact.

An elastic vibration requires an elastically loddgateU; = U, + AU as starting
condition. During a vibration there is a continuduansformation ofAU into kinetic
energyE,», and back, but this is not the kinetic enekgy, of conservative physics in
eqn.1; the transformation &, into Ex, and back requires Newtonian work to be done
while the stateH is invariant, whereas a vibration causes altemgatitates with the
extremedJy andU; or, in the case of a volume vibratiddg = AU. The motion of a body
in free space is a free motion with free velocigjtifin the limits given byH) whereas a
vibration is not a free motion, and its ‘velocitis a material property. The energy
conservation lawg, + Ey. = constandAU + E,i, = constlook similar, but they should
not be mixed up.

If the surfaceA of a system is understood to contaidiscrete bodies in free space,
we can consider either the transformation of thgirinto E, and vice versa according to
egn.l, or we can consider energetic exchanges bettie system as a whole and a
surrounding according to eqn.3 to the effect thatdimensions of the system and/or the
velocitiesv of the n bodies change; in the latter cadechanges and thus the internal
energyU of the entire system, but the interior of thbodies themselves is not accessible
to consideration in either case, especially nat théernal energetic state. If the system is
understood to coincide with the dimensions of areie body or to form a subregion
within it, only the interaction of system and sumding can be considered, but any kinetic
energy associated with this body in some extemaa& §pace is irrelevant. That By, is
by nature a subset &f, neither in the first nor in the second case gamternal energy
and an external kinetic enerBy,, be logically summed.

The contrast between eqn.1 and eqn.3 is expréssazhcise form by the tools of
potential theory. The divergence of a force fieid flis interpreted as ,a measure of the
work done upon/by a system” (Ref.8:79-81). The haplconditiori]?U = divf =0 U =
some potential) characterizes conservative phygoablems, indicating that work was
done onlywithin the system, and no change of state has occurgever, if a change of
state is observed, the Poisson condition fdiw ¢ indicates that there were non-zero
energetic exchanges between system and surrouraidghe process is non-conservative,
i.e. work has been dongpon the system. The divergendeis a measure of thermo-
dynamic work per unit mass, it is also called tharse density or charge density. (The



conditiontr = 0 above is a form of the Laplace condition, iymgy that no work was
done during elastic loading.)

Newtonian mechanics: Thermodynamics:
physics of discrete bodies physics of changes of state
in freespace physics of distributed mass

D H PV = nRT

J | U

:
(dw) + (dg) | dU

Fig.1  Systematics of energetic terms in physics.ekplanation see text.

Whereas a real gas may be understood simplistiaalh kinetic system afbodies
which interact only and exclusively through cothisal contact, that is certainly not
possible for solids. Solids and fluids consist ohdensed matter, they are internally
bonded. They have a considerable internal pregsar®,5kbar for solid K, 2,5kbar for
solid Li) which is a concept of use entirely in feetmodynamic context. The internal
pressure is defined as the pressure a mol of sudestaould have if it were an unbonded
ideal gas that is compressed to the molar volunteeo$ame substance in solid form. That
pressure is internally balanced by the bonds (&jnstich that solids have a finite volume
in equilibrium with a vacuum, and any external laattracts with that internal pressure.
This concept has no place within the framework ofwhbnian mechanics.
Characteristically, bonds in solids are never noeil in all textbooks on continuum
mechanics known to this author. Consequently, ikeudsion of forces effective in the
deformation of continua has in fact never been detap

3. Textbook Examples

The following examples are taken from textbooks chhare often cited as reference
authorities, their authors are deceased. There dearth of evidence to demonstrate that
elastic deformation is understood as an energbticahservative process up to this day.

1. Love (Ref.9:94) gives the First Law of Thermpdgics as

[[[ (8T, +8U )dxdydz= 3w, +3Q (5a)



wheredT is the kinetic energy)U the intrinsic (internal) energgW is the work,
anddQ the supplied heat.
2. Fung (Ref.10:346) gives the First Law of Thedymamics in the form
K+E=Q+P (5b)
where the dot denotes the material derivabivBt. K is the kinetic energyk the
internal energy per unit mass, a@dhe heat inputP is the sum of the work done
by the body force per unit volume and the surfaaetion. The time derivative is
implied because the acting force is understood @ment per unit time, i.e. it is a
direct reference to Newton’s Second Law.
3. Budd (Ref.11:356) gives the First Law of Thedymamics in the form
dQ + dA, = dE + dU (5¢)
whereQ is the supplied hea8, is the work done by the external forc&g,is the
kinetic energy, antll the internal energy, all per unit volume.
This is not the First Law of Thermodynamics. Th&senulations are in fact an attempt to
reinterpret the energy conservation law for charafestate (eqn.3) as conservative in the
sense of Bernoulli (egn.1), and in fact to turn Eiest Law upside down. The kinetic
energyEy, is a subset of the internal energy(eqn.2, eqn.4a, Fig.1). They cannot be
treated as independent terms, therefore they cammasummed? It is this conservative
structure in the theory of elasticity — which isedio Euler — that results invariably in the
conclusion that a volume-neutral deformation dagtsr@quire work (see below).

The expression of the First Law as a time dereafeqn.5b) must be startling to
any thermodynamicist. After all, changes of state time-independent. The reason is
simple: because continuum mechanics is an adaptafidNewton’s theory, continuum
mechanics does not know any other definition afrad tharf = m do/dt = ma, the rate of
momentap per unit time. But this definition is a very spalcone, it applies only and
exclusively to the acceleratianof a discrete body with inertial massin free space, but
not to continuum physics. The far more generalnitédn f = g0U/0x, whereU may be
any potential, including thermodynamic (electronetgn) potentials, defines a force field,
and it is time-independent. However, it has neveerbused in continuum mechanics.
Continuum mechanics in its present form is noteddfitheory in the sense this term is
commonly understood because force fields must bgatefrom a potential.

Newton’s mechanics starts with an equation of amtbecause the state of the
kinetic system is invariant, and Newtonian workwierk donewithin the system; it is
acceleration work, leading to a transformationEpf, into E,,; and vice versa, with the
energy function, the Hamiltoniar remaining constant (eqn.1). Such processes desarib
path in the Hamiltonian position-velocity spacestéad, the approach to a change of state
starts with an equation of state because the sfatee systenU is a variable, ané&dV-
work is work donaipona system; it describes a patHA¥%-space.

4, Love (Ref.9:166) treats deformation as a vamgt starting with Hamilton’s
principle
[3(T -V)dt+[dwdt=0 (6)
whereT andV are the kinetic and potential energy. The santore by Sneddon
& Berry (Ref.13:15, ¥ eqn.) and Green & Zerna (Ref.14:73, eqn.2.7.6).



A variation is a conservative concept in strict eation of Bernoulli's law, i.e. any
changes of state aby definitionexcluded from consideration. (One must considat tie
theory of variations was invented by Euler who dé&dyears before the First Law, and
thus nonconservative physics, was discovered. Tiheemergy conservation law known to
Euler was Bernoulli's law, eqn.1. It is also wokhowing that Euler did not consider
elastic deformation of solids, but the flow of watehich he visualized as a friction-free
Newtonian fluid, i.e. a perfectly unbonded substéan@he differenceT(- V) is known as
the kinetic potential hencedW is interpreted as Newtonian work, i.e. acceleratimrk,
i.e. within the constraints of Bernoulli's law, butt asPdV-work; the sumT + V) is, after
all, invariant (eqn.1).

5. Revealing is the remark by Green & Zerna (ReV.2f, nearly literally repeated by
Sneddon & Berry, Ref.13:15): ,If the strained baslyn equilibrium therf =0 and
the virtual work A in Ref.14 =W in Ref.9) of the external forces acting on the
body become®*A =0U; [...] this states that the variation of the totaitgntial
energy U in Ref.14 =V in Ref.9) has a stationary value.”

That equilibrium condition is the external one, News Third Law, the sum of all

external forces. It is not the thermodynamic equiilim conditionf;, + fs, = 0, it has in

fact not been considered. The expression ‘virtuatkwis fitting — in the light of the
conditionH = const(eqgn.1).

It has escaped the mechanics of solids commuindtty \William Hamilton was an
astronomer who ponderecklestial mechanics, i.e. the physics of discrete bodies in
freespace. His theory could be adapted to the méhaf solids only by ignoring the
properties of solids altogether. Elastic deformatimrk is not at all virtual, but very real
indeed, it is akin td*d\~work; elastic deformation is a change of stateheaapproached
only and exclusively by means of an equation ofestauch a$?V = nRT (for a solid a
more general form must be sought), and not a vaniat

4.  Conseguences

The consequence of the attempt to interpret eldsfiormation as a conservative process
in the sense of eqn.1 is that it is not possibldedve a non-zero work term for a volume-
constant elastic deformation. This shall be demated in three different ways.
1. Euler’s continuity condition is
% 1p =0 ™)
ot 0x
wherep is the density of the inertial mass, ani the velocity. If volume and thus
density are invariant, the first term is zero. Beeond term indicates that all paths
cancel for a volume-constant deformation, thattatredisplacements and con-
traction displacements sum to zero. If so, the waiske must cancel as well since
stretch work and contraction work have opposite.ditence the total work is zero.
2. The First Law of Thermodynamics is
du =- PdV + TdS (8a)
in expanded form



dU =- PdVv -oijdsij + TdS (8b)
where the first term RHS is isotropic, and theosekterm contains only the
isochoric deformation workao( = stress tensorg = strain tensor). Thus for a
volume-neutral deformatioRdV = 0, the condition of reversibility i§dS= 0, and
we are left withdU = - jdg;. Although tensor products do not communic#B ¢
BA) in general, the trace of a tensor is an invariant the trace of the tensor
product does communicate &B = tr BA, tr A tr B = tr B tr A). But the condition
of volume invariance is botb; = 0 anddg; = 0. It follows that for a volume-
neutral deformation dU = 0, and no work is doneBatchelor (Ref.15:141-147)
uses a different terminology, but he is perfectlgac in his discussion of the
deviatoric stress tensor that it does not contelautergetically to the deformation.

3. InLandau & Lifschitz (Ref.16:7-9) the equilibriucondition is

do.
=, (©)
0x
and the work of the internal tensions per unitw is
OR =-0;0u; (10)
where u is the displacement, such that
90;;
[dRdV = [—-duy, dV (11)
oX,

J

(eqn.3,1 in the source text). But according to.@ghe integrand on the RHS is

zero such that the total work is zero. Additionathe volume-constant condition is

du/dx; = 0, hencd dR dVhas no choice but to be zero, and no work is dioraa

elastic deformation.
A subtle inconsistency in the three arguments amiscéhe mass term. Egn.7 uses the
inertial mass [kg], whereas in the following argumsethe thermodynamic mass is implied
which is dimensionless and measured in mol. Inrotherds, Newtonian and thermo-
dynamic concepts are implicitly taken to be equamél However, this is incorrect. If
Newtonian terms are used, the work done in thege®ander discussion concerns the
acceleration or displacement of inertial mass @edpacavithin a kinetic system, under
the constraint that the energy of the isolatedesysis invariantE, + Eyo = const If
thermodynamic terms are used, the energy consenviw is necessarily the First Law
(eqn.3), and the work is dompona system: the system interacts with a surroundigag,
energyU is a variable. Mixing these concepts produces é@sgive equations, but not
useful physics.

Another inconsistency exists in the contrast efuhderstanding of the stress tensor
by Love, Fund®, Budd”, Sneddon & Berr¥}, and Green & Zeron one hand, here
called the Euler-Cauchy-stress, and Landau & Lifsthon the other. The Euler-Cauchy-
stress tensor is solidly based on the entire Naamoframework for the mechanics of
discrete bodies in freespace. The Euler-Cauchyhed deformation and flow was
concluded in 1821 by Cauchy. Necessarily, physomaicepts based on the First Law
(eqn.3) cannot have been considered since the Vedie discovered only in 1842. It is not
possible to transform it into a proper differentégdproach; none of the quoted sources
make an attempt to do so, nor any other sourcesnkrio me. Yet Landau’s tensor is



embedded in a differential approach. Apparentlydaansaw the necessity to postulate his
tensor in order to develop a differential approaelcause that is the standard path into
modern physics. Landau’s tensor is postulated aitldout conceptual root. Thus, the
Euler-Cauchy-stress tensor and Landau’s tensonarilentical, and in fact incompatible
with one another; they are two independent projoosit

5. Refutation of Cauchy Stress

Above (egn.9-11) it is shown that Landau’s tensorinsufficient. The refutation of
Cauchy'’s tensor is repeated here from Ref.3. Censicsystem of distributed mass within
a larger volume of distributed mass. For simplicibe system is assumed to be spherical,
and the distributed mass may be bonded as in & swolunbonded as in a gas. Its pressure
is given byP = AU/AV which is an explicit statement of the proportidgtyabf mass and
energy in some given state. Both the externallfiepdorces and the forces exerted by
the system upon the surrounding form radial foredd$, one directed inward, one
outward, such that at every point on the systerfaseiA the equilibrium condition iy

+ fsur = 0, which translates into the thermodynamic éloiilm Psys; + Psur = 0. Since the
system contains mass, and since it interacts wighsurrounding through exchange of
work, it acts as a source of forces. An existeheertem in potential theory requires that if
there is a functiofiof a pointQ such that

[f(Q)av =k, (12)

both sides must vanish simultaneously with the mmaxchord ofV if V - 0 (Ref.8:45).
The relation can thus be represented by the Gausigdnce theorem,

[fmdA=[D@EdV =« (13)

wheref is either one of the forces mentioned ab&V@= ¢ is the source density or charge
density which is a constant that characterizestat in which the system is, arnd= ¢V
is the charge which is known to be proportionahtass in a given state. Thus in eqn.13,
LHS Ok O V. SinceV O r* wherer = [rOis the radius of the system, bt r?, for LHS
0OV to hold it follows that

fl

I
This result is known since Poisson derived it i138Ref.8:156). Thus i¥ - 0, bothf
andr vanish such that eqn.12 is observed. HoweveY, as0, AU/AV - const but

CFVA - oo, (15)
The limit does not exist. The argument is necesaad, sufficient proof that the Cauchy
stress tensor does not exist.

Thus, the two definitions of pressure known to Newton'sP = [f[JA and the
thermodynamid® = AU/AV, are not equivalent, and only the latter can keluwere. The
continuity approach in Cauchy’s theory of stresbased on the assumption thatVA -
constasV - 0. This is not the case. Newton'’s definition oapplies to free surfaces or
to sections of closed surfaces at constarut not ifA is closed and is a variable. When
Cauchy’ worked out his theory, potential theory was siill its infancy, and the

const (14)
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importance to distinguish system and surrounding wat understood yet (it is in fact
missing entirely from continuum mechanics literatup to this day, cf. Ref.4). Thus he
used Newton’s Third Law as equilibrium conditioras did Euler — whereas the correct
equilibrium condition is that of thermodynamics, fstem vs. surrounding. Cauchy
believed that in his continuity approa¢his independent dfir [I. He did not consider that
[rdis a measure of the scale of the system, and matfwlly related to mass, which is a
variable in his limit operation. Todaymust be equated with the zero potential distance
[Ref.8:63] which may be infinite or finite, but égannot be zero. In thermodynamicss
the radius of the thermodynamic system, and thoisefilike n andV in PV = nRT
Cauchy’s continuity approach is understood to ke ghoof of existence of the stress
tensor. His reasoning violates the condition in.&8n(Batchelor [Ref.15:9f] noted the
difference in behavior of volume terms and surfeens asv - 0, but took the scale-
independence of f[JA for granted.)

6. Comment on Gibbs (1877)

The first sentence in Gibbs (Ref.18:343) is: ,ladting of the physical properties of a
solid, it is necessary to considerstate of straitf
It is therefore postulated priori that strain is a state function. Here Gibbs foow
Lagrange, who in turn follows Euler. The naturatealative would have been
displacement. If straimere a state function, all identical states of strainudtl cost the
same amount of work. It is known experimentallyt i@ energetics of deformation differ
for pure shear and simple shear for identical measaf strain, both in the elastic and the
plastic field (and in an inverse manf)eHence the state atrain is of limited physical
interest, it bears insufficient information — erstig and geometric. Strain cannot be a
thermodynamic state function; it can at best beemstdod as a geometric configuration
state, but not as an energetic state.

On p.345 Gibbs derives an expression wiegris the energy per unit volume, the
dx' etc. are the coordinates of the reference (untbjastate, theix etc. are the coordinates
of the deformed state, and tKeetc. are the axes of an external coordinate sghich the
x' and thex are related to one another. The expression is

5e,. dxdydz = X,. G%dXdydz‘. (16)

“Now the first member of this equation evidentlypresents the work done upon the
element by the surrounding elements; the secondbmemust therefore have the same
value. Since we must regard the forces acting oposife faces of the elementary
parallelepiped as equal and opposite, the whol&done will be zero except for the face
which moves parallel t&.”

If so, the work done must cancel for an isochdeformation since stretch work
and contraction work have opposite sign. Hencetdked work is zero. Gibbs evidently
assumed that no work is done in a direction in Wwimiathing happens. This is a Newtonian
thought, and it cannot possibly be correct; therynadhic work is always done upon a
volume If we consider a volume of air in a tube thatlssed by a piston, and we move
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the piston, the volume is changed. It is then fothad a change of pressure has occurred
on all air-container interfaces, not just the omat tmoved. If the substance were a solid
(for the sake of the argument, the solid-tube fatar is frictionless, and the solid is
isotropic), the same result would be found.

The pressure in thé andZ directions has increasedthoughnothing has moved in
these directions. This shows that the energeticefifrmation can never be considered in
one direction only. An example will demonstratestim detail.

Step 1if a gas is compressed X allowed to move irZ at constant external
pressure, and is fixed, the gas will experience a change of shajit is deformed — but
not a change of stat&; = E, because/; =V,. No work is done, no elastic potential has
built up,w; = 0. If the same is done with a solid it will belg Z, but not freely because of
the internal bonds, and an elastic-anisotropicklbded state is reached; the solid has
undergone a change of stalg,> Ey, w; > 0. Step 2 if the dimensionsX andY are then
kept fixed, and the walls i@ are moved back to their initial position, both gasl solid
experience a change of stat®,>E; becauseV, < V, but whereas the gas is in an
isotropically loaded state, the solid is still im anisotropically loaded statBtep 3to get
the solid into an isotropically loaded state itniscessary to move all walls such that
ox/ox' = dyldy' = 02/0Z', resulting in a further volume change, ahd> E,; ditto for the gas.

The total work done on the gaskgnis w, + ws; the total work done on the solid is
w; + W, + wa. If the initial dimensions are changed fragndirectly toE,, the work done
on the gas is thus,, for the solid it isnv; + w,. That is, the work componens is due to
the fact that the walls i@ do not move. This is counterintuitive at first,thhis is the
physical reality. It should also be clear that stateE; for the solid is not the lowest
possible one for a givedx,/0X'. Starting fromE,, if the wall inY is allowed to move at
constantox,/0x, the solid would contract id, expand inY until dy/dy' = dz/0z', and the
change of state would result in an energetic rélaxalf the same would be done with a
gas it would not work; there would be no drivingde for the expansion i, i.e. no
potential that seeks to attain its lowest energstite.

Thus a change of state, isotropic or anisotrochy nature a 3D-problem.
Processes in one direction are never independéaheadthers. This also demonstrates that
the equation of stateV = nRTimplies a particular set of boundary conditionisetropic
— which are always valid for slow flow of a gas &ese of the unbonded nature of gas, but
not generally. All this was not considered by Gibfar by anyone else.

It should be noted, too, that Gibbs’ conclusiortha quote above is incompatible
with standard continuum mechanics: Gibbs assunetchthwork is done perpendicular to
X if no change of length occurs viandZ. In conventional continuum mechanics the
attenuation irY andZ due to stretch iXX is geometrically taken care of by Poisson'’s ratio,
yet the work done is only considered to be duettetah in X whereas work due to
attenuation irY andZ is never considered, and thus implicitly assunoelet zero. Neither
can both assumption sets be valid simultaneouslyjsneither one in line with reality in
the present simplistic form. — It is curious thablis'® was not aware, or did not recognize
the relevance of Clausitand eqn.4 above.
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7. Conclusion

The form of the First Law as in eqn.5a-c is invakan.15 shows that the stress tensor
does not exist. A detailed and exhaustive discassighe Euler-Cauchy theory is given in
Ref.4 where it is shown that the Euler-Cauchy the@and thus the entire body of
continuum mechanics, is profoundly incompatiblehwiite theory of potentiafsin fact,

the latter is entirely unknown in mechanics of dwlialthough it is the theoretical
framework of classical physics. The known theoakslastic deformation are therefore in
need of revision. It must be realized that the #sipelastic law known to us is Boyle's
law which so far only gives us what may be calledisotropic deformation, a volume
change, for an ideal gas. A proper deformationhewst start with the First Law and the
equation of statPV = nRT, and be fully compatible with general thermodynesHi
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