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The systematics of energetic terms as they are taught in continuum mechanics deviate seriously from 
the standard doctrine in physics, resulting in a profound misconception. It is demonstrated that the 
First Law of Thermodynamics has been routinely re-interpreted in a sense that would make it 
subordinate to Bernoulli’s energy conservation law. Proof is given to the effect that the Cauchy stress 
tensor does not exist. Furthermore, it is shown that the attempt by Gibbs to find a thermodynamic 
understanding for elastic deformation does not sufficiently account for all the energetic properties of 
such a process.  
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1. Introduction 

Late in his life, Kestin1 observed, “The subject of ‘conventional’ thermodynamics, as it is 
taught more or less correctly, ... and the subject of solid mechanics, often taught as 
strength of materials, have developed largely independently of each other. Although both, 
ultimately, allow engineers to use them for design and testing with rather satisfactory 
results, they are not consistent with each other. They certainly failed to converge to this 
day. In a situation like this it is quite natural to think that, perhaps, the foundations of both 
disciplines are at fault.” It is strange to see that some people have indeed noticed the 
profound chasm between continuum mechanics and thermodynamics, and still they were 
clueless as to how this contrast came about, or how it could be closed.  
 By its mathematical structure and physical outline the thermodynamic theory is in 
line with potential theory: it considers changes of the energetic state, hence during a 
thermodynamic process there are energetic fluxes between system and surrounding, thus 
an approach must start mathematically with a Poisson equation, ∇2U = ϕ, as Born2 
requested for all of continuum physics. There is only one exception. Continuum mechanics 
was founded long before the necessity to distinguish system and surrounding was 
recognized, before it was realized that Newtonian work and PdV-work are very different 
things, and even before energy and force were clearly separated as different entities. 
Hence, the mathematical structure of continuum mechanics is conservative; in effect, the 
quaint concept of a force conservation law has survived until today from an era when it 
was not known yet that the energy of a system can be a variable. For Euler in the late 18th 
century it made perfect sense to postulate that tr σ = 0 (σ = stress tensor); today the 
condition is recognized as one form of the Laplace condition which characterizes the 
process as conservative, which is against the nature of an elastic deformation.  
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 The assumptions made in the derivation of the Cauchy stress tensor have been 
shown to be incompatible with potential theory.3 The continuum mechanics theory has 
been critically reviewed, and the first steps towards a new approach have been outlined.4 It 
is this author’s firm opinion that continuum mechanics should have been founded again 
150 years ago, right after the discovery of the First Law of Thermodynamics when the 
systematics of energetic terms became completely known; unfortunately this has not been 
done. Instead, the difference between conservative and non-conservative physics, the most 
profound and fundamental difference among the classes of physical processes, was so 
thoroughly blurred in material science that up to this day people have serious difficulties to 
recognize it – because they have been trained not to see it. Plainly, an equation of motion 
is only and exclusively the proper first step into a theory if the process under discussion is 
conservative, involving the mechanics of n discrete bodies in free space, which does not 
change the total energy of the system of n bodies; whereas a nonconservative process, by 
definition a change of state, must be approached by an equation of state. By nature, all of 
continuum physics falls into the latter category, including elasticity. The rather profound 
physical differences between conservative Newtonian mechanics and thermodynamics are 
listed in Table 1.  
 In the first part of this communication I give an example to demonstrate that the 
systematics of energetic terms in continuum mechanics is at variance with modern physics. 
In the second part I wish to demonstrate that even a man who is rightfully counted among 
the founding fathers of modern thermodynamics, had a hard time to free himself 
completely from the spell cast over the 19th century by Euler and his conservative 
concepts.  
 

Table 1 

 Newtonian Mechanics Thermodynamics 
governing equation equation of motion  f = ma equation of state PV = nRT 
condition of equilibrium Newton’s Third Law: equilibrium of 

two two colliding bodies:   f1 + f2 = 0 
equilibrium of system and sur-
rounding: Psyst + Psurr = 0 

definition of work w = f ⋅⋅⋅⋅ d            always linear ∫dw = ∫PdV         always spatial 
energy conservation law Bernoulli: Ekin + Epot = const First Law: dU = dw + dq 
purpose of theory understanding of work done within a 

system against inertia, acceleration work 
understanding of energetic 
changes of state, work done 
upon a system against its 
internal energy  

path independence of work in Euclidean space  in PV-space 
reference potential velocity potential thermodynamic-electromagnetic 

potentials 
time as a parameter indispensable  time-independent 
application physics of discrete bodies in free space physics of continuously 

distributed mass 

 

 Is it at all possible to understand elastic behavior as a linear physical process? The 
idea comes from Hooke5 and his experiments. In modern light the range of his data is so 
small that not much can be concluded from them, except that the work function is 
continuous. In the technical application the law is long known to be insufficient. Also, a 
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proper discussion of the boundary conditions is usually missing in the statement of the law. 
It does matter, however, if the displacement type is that of plane pure shear, plane simple 
shear, or axial shortening; whether the reference mass is part of a larger continuum of 
solid, or whether free surfaces are nearby, such as for a bar; and even its shape is 
important. Furthermore, whether a pattern of data points follows a straight line, a circle, a 
sine function or a power law cannot in general be decided from the phenomenology of the 
graph – consider the shape of the Earth at small scale – but only and exclusively from the 
theoretical context. Elastic deformation is a change of state; all thermodynamic work 
functions are logarithmic, hence elasticity must be logarithmic. The difference between a 
linear law and a logarithmic law may not matter phenomenologically, especially within the 
very short range that is available to reversible elastic behavior before failure. However, it 
has the most profound consequences for the mathematical structure of the theory which, 
after all, serves as the guide in uncharted theoretical terrane. If it is wrong, it leads astray. 

2. Systematics of Energetic Terms in Physics 

From the systematics of energetic terms as they are understood today (Fig.1), the sum of 
the kinetic energy and the potential energy of n discrete bodies give the entire mechanical 
energy of a kinetic system,  
  Ekin + Epot = H = const;  (1) 
this sum is known as Bernoulli’s law, the energy conservation law of conservative physics. 
Epot represents all potentials that may be observed, e.g. gravity; in the context here the 
emphasis is on the electromagnetic potentials of the atoms, since the bonds in a solid are 
electromagnetic in nature. Whereas the transfer of kinetic energy from one body to another 
requires bodily contact, electromagnetic forces act over a distance. A  force in the sense of 
the equation of motion f = ma is only one single vector whereas electromagnetic forces are 
always field forces; thus the two types of forces differ profoundly in their physical, and 
mathematical properties.   
 By convention, the notation H is used in mechanics if processes are considered 
where eqn.1 is observed, i.e. H = const. If the RHS is a variable, however, the common 
notation differs since  
  H = U  (2) 
is the internal energy of thermodynamics in the standard state. Any change of the state U0 
requires energetic fluxes between system and surrounding, either in form of work dw or in 
form of heat dq; hence the change of state is given by  
  dU = dw + dq,  (3) 
which is the First Law of Thermodynamics, the energy conservation law for 
nonconservative processes. The changed state is thus given by U0 + dU = U0 + dw + dq.  
It is not possible to understand the mechanical behavior of solids in terms of f = ma. 
Clausius6 and Grüneisen7 identified the forces effective within and without a solid  

  ( ) PVrrfm =+∑∑ )(
3

1 2v  (4a) 
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where the first term LHS contains the kinetic energies of the oscillating atoms (m = atomic 
mass, v = velocity); the second term contains the product of the distance r between two 
atoms and the forces f acting between them; V is the molar volume and P the pressure to 
which the solid is subjected. Eqn.4a is identical to eqn.1. Clausius6 equated the first term 
LHS (kinetic energy) with heat; for adiabatic mechanical loading it is without con-
sequences in solids at temperatures below the diffusion limit, and subsequently ignored. 
Grüneisen7 expanded the second term LHS into the potential due to the attracting forces f1 
and the potential due to the repulsive forces f2 in a solid. In the unloaded state the RHS is 
zero, and since a solid in a vacuum is in equilibrium with itself, eqn.4a reduces to  
  ( ) 021 =+∑∑ rfrf  (4b) 

where both f1 and f2 are electromagnetic in nature, and r is the zero potential distance. 
These are the forces with which forces fsurr due to external loading (eqn.4a when RHS ≠ 0) 
must interact.    
 An elastic vibration requires an elastically loaded state U1 = U0 + ∆U as starting 
condition. During a vibration there is a continuous transformation of ∆U into kinetic 
energy Evib and back, but this is not the kinetic energy Ekin of conservative physics in 
eqn.1; the transformation of Epot into Ekin and back requires Newtonian work to be done 
while the state H is invariant, whereas a vibration causes alternating states with the 
extremes U0 and U1 or, in the case of a volume vibration, U0 ± ∆U. The motion of a body 
in free space is a free motion with free velocity (within the limits given by H) whereas a 
vibration is not a free motion, and its ‘velocity’ is a material property. The energy 
conservation laws Ekin + Epot = const and ∆U + Evib = const look similar, but they should 
not be mixed up.  
 If the surface A of a system is understood to contain n discrete bodies in free space, 
we can consider either the transformation of their Epot into Ekin and vice versa according to 
eqn.1, or we can consider energetic exchanges between the system as a whole and a 
surrounding according to eqn.3 to the effect that the dimensions of the system and/or the 
velocities v of the n bodies change; in the latter case H changes and thus the internal 
energy U of the entire system, but the interior of the n bodies themselves is not accessible 
to consideration in either case, especially not their internal energetic state. If the system is 
understood to coincide with the dimensions of a discrete body or to form a subregion 
within it, only the interaction of system and surrounding can be considered, but any kinetic 
energy associated with this body in some external free space is irrelevant. That is, Ekin is 
by nature a subset of U; neither in the first nor in the second case can an internal energy U 
and an external kinetic energy Ekin be logically summed.  
 The contrast between eqn.1 and eqn.3 is expressed in concise form by the tools of 
potential theory. The divergence of a force field div f is interpreted as „a measure of the 
work done upon/by a system” (Ref.8:79-81). The Laplace condition ∇2U = div f = 0 (U = 
some potential) characterizes conservative physical problems, indicating that work was 
done only within the system, and no change of state has occurred. However, if a change of 
state is observed, the Poisson condition div f = ϕ indicates that there were non-zero 
energetic exchanges between system and surrounding, and the process is non-conservative, 
i.e. work has been done upon the system. The divergence ϕ is a measure of thermo-
dynamic work per unit mass, it is also called the source density or charge density.  (The 
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condition tr σ = 0 above is a form of the Laplace condition, implying that no work was 
done during elastic loading.) 
 

  U 
  +
 dU

f = ma
Ekin

Epot
UH

dw dq+

Newtonian mechanics: 
physics of discrete bodies  
in freespace 

Thermodynamics: 
physics of changes of state
physics of distributed mass

f = ei dU/dxi

 PV = nRT

 
Fig.1 Systematics of energetic terms in physics. For explanation see text.  

 
 Whereas a real gas may be understood simplistically as a kinetic system of n bodies 
which interact only and exclusively through collisional contact, that is certainly not 
possible for solids. Solids and fluids consist of condensed matter, they are internally 
bonded. They have a considerable internal pressure (ca.0,5kbar for solid K, 2,5kbar for 
solid Li) which is a concept of use entirely in a thermodynamic context. The internal 
pressure is defined as the pressure a mol of substance would have if it were an unbonded 
ideal gas that is compressed to the molar volume of the same substance in solid form. That 
pressure is internally balanced by the bonds (eqn.4b), such that solids have a finite volume 
in equilibrium with a vacuum, and any external load interacts with that internal pressure. 
This concept has no place within the framework of Newtonian mechanics. 
Characteristically, bonds in solids are never mentioned in all textbooks on continuum 
mechanics known to this author. Consequently, the discussion of forces effective in the 
deformation of continua has in fact never been complete.  

3. Textbook Examples 

The following examples are taken from textbooks which are often cited as reference 
authorities, their authors are deceased. There is no dearth of evidence to demonstrate that 
elastic deformation is understood as an energetically conservative process up to this day.  
1.  Love (Ref.9:94) gives the First Law of Thermodynamics as 

  ( )∫∫∫ δ+δ=δ+δ QWdxdydzUT 11  (5a) 
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 where δT is the kinetic energy, δU the intrinsic (internal) energy, δW is the work, 
and δQ the supplied heat.  

2.  Fung (Ref.10:346) gives the First Law of Thermodynamics in the form  

  PQEK +=+ &&&  (5b) 

where the dot denotes the material derivative D/Dt. K is the kinetic energy, E the 
internal energy per unit mass, and Q the heat input. P is the sum of the work done 
by the body force per unit volume and the surface traction. The time derivative is 
implied because the acting force is understood as moment per unit time, i.e. it is a 
direct reference to Newton’s Second Law.  

3.  Budó (Ref.11:356) gives the First Law of Thermodynamics in the form  
  dQ + dAa = dEk + dU (5c) 

where Q is the supplied heat, Aa is the work done by the external forces, Ek is the 
kinetic energy, and U the internal energy, all per unit volume.  

This is not the First Law of Thermodynamics. These formulations are in fact an attempt to 
reinterpret the energy conservation law for changes of state (eqn.3) as conservative in the 
sense of Bernoulli (eqn.1), and in fact to turn the First Law upside down. The kinetic 
energy Ekin is a subset of the internal energy U (eqn.2, eqn.4a, Fig.1). They cannot be 
treated as independent terms, therefore they cannot be summed.12 It is this conservative 
structure in the theory of elasticity – which is due to Euler – that results invariably in the 
conclusion that a volume-neutral deformation does not require work (see below). 
 The expression of the First Law as a time derivative (eqn.5b) must be startling to 
any thermodynamicist. After all, changes of state are time-independent. The reason is 
simple: because continuum mechanics is an adaptation of Newton’s theory, continuum 
mechanics does not know any other definition of a force than f = m dp/dt = ma, the rate of 
momenta p per unit time. But this definition is a very special one, it applies only and 
exclusively to the acceleration a of a discrete body with inertial mass m in free space, but 
not to continuum physics. The far more general definition f = ei∂U/∂xi where U may be 
any potential, including thermodynamic (electromagnetic) potentials, defines a force field, 
and it is time-independent. However, it has never been used in continuum mechanics. 
Continuum mechanics in its present form is not a field theory in the sense this term is 
commonly understood because force fields must be derived from a potential.  
 Newton’s mechanics starts with an equation of motion because the state of the 
kinetic system is invariant, and Newtonian work is work done within the system; it is 
acceleration work, leading to a transformation of Ekin into Epot and vice versa, with the 
energy function, the Hamiltonian H remaining constant (eqn.1). Such processes describe a 
path in the Hamiltonian position-velocity space. Instead, the approach to a change of state 
starts with an equation of state because the state of the system U is a variable, and PdV-
work is work done upon a system; it describes a path in PV-space.  
4.  Love (Ref.9:166) treats deformation as a variation, starting with Hamilton’s 

principle  
  0 )( =δ+−δ ∫∫ WdtdtVT  (6) 

where T and V are the kinetic and potential energy. The same is done by Sneddon 
& Berry (Ref.13:15, 2nd eqn.) and Green & Zerna (Ref.14:73, eqn.2.7.6).  
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A variation is a conservative concept in strict observation of Bernoulli’s law, i.e. any 
changes of state are by definition excluded from consideration. (One must consider that the 
theory of variations was invented by Euler who died 60 years before the First Law, and 
thus nonconservative physics, was discovered. The only energy conservation law known to 
Euler was Bernoulli’s law, eqn.1. It is also worth knowing that Euler did not consider 
elastic deformation of solids, but the flow of water which he visualized as a friction-free 
Newtonian fluid, i.e. a perfectly unbonded substance.) The difference (T - V) is known as 
the kinetic potential, hence δW is interpreted as Newtonian work, i.e. acceleration work, 
i.e. within the constraints of Bernoulli’s law, but not as PdV-work; the sum (T + V) is, after 
all, invariant (eqn.1).  
5.  Revealing is the remark by Green & Zerna (Ref.14:73f, nearly literally repeated by 

Sneddon & Berry, Ref.13:15): „If the strained body is in equilibrium then f = 0 and 
the virtual work (A in Ref.14 = W in Ref.9) of the external forces acting on the 
body becomes δ*A = δU; […] this states that the variation of the total potential 
energy (U in Ref.14 = V in Ref.9) has a stationary value.”  

That equilibrium condition is the external one, Newton’s Third Law, the sum of all 
external forces. It is not the thermodynamic equilibrium condition fint + fsurr = 0, it has in 
fact not been considered. The expression ‘virtual work’ is fitting – in the light of the 
condition H = const (eqn.1).  
 It has escaped the mechanics of solids community that William Hamilton was an 
astronomer who pondered celestial mechanics, i.e. the physics of discrete bodies in 
freespace. His theory could be adapted to the mechanics of solids only by ignoring the 
properties of solids altogether. Elastic deformation work is not at all virtual, but very real 
indeed, it is akin to PdV-work; elastic deformation is a change of state, to be approached 
only and exclusively by means of an equation of state such as PV = nRT (for a solid a 
more general form must be sought), and not a variation.  

4. Consequences 

The consequence of the attempt to interpret elastic deformation as a conservative process 
in the sense of eqn.1 is that it is not possible to derive a non-zero work term for a volume-
constant elastic deformation. This shall be demonstrated in three different ways.  

1. Euler’s continuity condition is 

   0=
∂
∂ρ+

∂
ρ∂

i

i

x

v

t
 (7) 

 where ρ is the density of the inertial mass, and v is the velocity. If volume and thus 
density are invariant, the first term is zero. The second term indicates that all paths 
cancel for a volume-constant deformation, that stretch displacements and con-
traction displacements sum to zero. If so, the work done must cancel as well since 
stretch work and contraction work have opposite sign. Hence the total work is zero.  

2. The First Law of Thermodynamics is  
   dU = - PdV + TdS  (8a) 
 in expanded form   



8 

   dU = - PdV - σijdεij + TdS  (8b) 
 where the first term RHS is isotropic, and the second term contains only the 

isochoric deformation work (σ = stress tensor, ε = strain tensor). Thus for a 
volume-neutral deformation PdV = 0, the condition of reversibility is TdS = 0, and 
we are left with dU = - σijdεij. Although tensor products do not communicate (AB ≠ 
BA) in general, the trace of a tensor is an invariant, and the trace of the tensor 
product does communicate (tr AB = tr BA, tr A tr B = tr B tr A). But the condition 
of volume invariance is both σii = 0 and dεii = 0. It follows that for a volume-
neutral deformation dU = 0, and no work is done. – Batchelor (Ref.15:141-147) 
uses a different terminology, but he is perfectly clear in his discussion of the 
deviatoric stress tensor that it does not contribute energetically to the deformation.  

3. In Landau & Lifschitz (Ref.16:7-9) the equilibrium condition is  

  0=
∂
∂σ

j

ij

x
,  (9) 

 and the work of the internal tensions per unit volume is  
  ijij uR δσ−=δ  (10) 

 where u is the displacement, such that 

  ∫∫ ∂
∂σ

= dVdu
x

dVdR i
j

ij
    (11) 

 (eqn.3,1 in the source text). But according to eqn.9 the integrand on the RHS is 
zero such that the total work is zero. Additionally, the volume-constant condition is 
∂ui/∂xi = 0, hence ∫ dR dV has no choice but to be zero, and no work is done in an 
elastic deformation.  

A subtle inconsistency in the three arguments concerns the mass term. Eqn.7 uses the 
inertial mass [kg], whereas in the following arguments the thermodynamic mass is implied 
which is dimensionless and measured in mol. In other words, Newtonian and thermo-
dynamic concepts are implicitly taken to be equivalent. However, this is incorrect. If 
Newtonian terms are used, the work done in the process under discussion concerns the 
acceleration or displacement of inertial mass in freespace within a kinetic system, under 
the constraint that the energy of the isolated system is invariant, Ekin + Epot = const. If 
thermodynamic terms are used, the energy conservation law is necessarily the First Law 
(eqn.3), and the work is done upon a system: the system interacts with a surrounding, its 
energy U is a variable. Mixing these concepts produces impressive equations, but not 
useful physics.  
 Another inconsistency exists in the contrast of the understanding of the stress tensor 
by Love9, Fung10, Budó11, Sneddon & Berry13, and Green & Zerna14 on one hand, here 
called the Euler-Cauchy-stress, and Landau & Lifschitz16 on the other. The Euler-Cauchy-
stress tensor is solidly based on the entire Newtonian framework for the mechanics of 
discrete bodies in freespace. The Euler-Cauchy-theory of deformation and flow was 
concluded in 1821 by Cauchy. Necessarily, physical concepts based on the First Law 
(eqn.3) cannot have been considered since the latter was discovered only in 1842. It is not 
possible to transform it into a proper differential approach; none of the quoted sources 
make an attempt to do so, nor any other sources known to me. Yet Landau’s tensor is 
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embedded in a differential approach. Apparently Landau saw the necessity to postulate his 
tensor in order to develop a differential approach because that is the standard path into 
modern physics. Landau’s tensor is postulated and without conceptual root. Thus, the 
Euler-Cauchy-stress tensor and Landau’s tensor are not identical, and in fact incompatible 
with one another; they are two independent propositions.  

5. Refutation of Cauchy Stress 

Above (eqn.9-11) it is shown that Landau’s tensor is insufficient. The refutation of 
Cauchy’s tensor is repeated here from Ref.3. Consider a system of distributed mass within 
a larger volume of distributed mass. For simplicity, the system is assumed to be spherical, 
and the distributed mass may be bonded as in a solid, or unbonded as in a gas. Its pressure 
is given by P = ∆U/∆V which is an explicit statement of the proportionality of mass and 
energy in some given state. Both the externally applied forces and the forces exerted by 
the system upon the surrounding form radial force fields, one directed inward, one 
outward, such that at every point on the system surface A the equilibrium condition is fsyst 
+ fsurr = 0, which translates into the thermodynamic equilibrium Psyst + Psurr = 0. Since the 
system contains mass, and since it interacts with the surrounding through exchange of 
work, it acts as a source of forces. An existence theorem in potential theory requires that if 
there is a function f of a point Q such that  

   ( )∫ κ=dVQf , (12) 

both sides must vanish simultaneously with the maxium chord of V if V → 0 (Ref.8:45). 
The relation can thus be represented by the Gauss divergence theorem,  

   κ=⋅∇=⋅ ∫∫ dVdA   fnf  (13) 

where f is either one of the forces mentioned above, ∇⋅⋅⋅⋅f = ϕ is the source density or charge 
density which is a constant that characterizes the state in which the system is, and κ = ϕV 
is the charge which is known to be proportional to mass in a given state. Thus in eqn.13, 
LHS ∝ κ ∝ V. Since V ∝ r3 where r = r is the radius of the system, but A ∝ r2, for LHS 
∝ V to hold it follows that  

   const=
r

f
 (14) 

This result is known since Poisson derived it in 1813 (Ref.8:156). Thus if V → 0, both f 
and r vanish such that eqn.12 is observed. However, as V → 0, ∆U/∆V → const, but  

   f/A → ∞.  (15) 
The limit does not exist. The argument is necessary and sufficient proof that the Cauchy 
stress tensor does not exist.  
 Thus, the two definitions of pressure known to us, Newton’s P = f/A and the 
thermodynamic P = ∆U/∆V, are not equivalent, and only the latter can be used here. The 
continuity approach in Cauchy’s theory of stress is based on the assumption that f/A → 
const as V → 0. This is not the case. Newton’s definition only applies to free surfaces A, or 
to sections of closed surfaces at constant V, but not if A is closed and V is a variable. When 
Cauchy17 worked out his theory, potential theory was still in its infancy, and the 
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importance to distinguish system and surrounding was not understood yet (it is in fact 
missing entirely from continuum mechanics literature up to this day, cf. Ref.4). Thus he 
used Newton’s Third Law as equilibrium condition – as did Euler – whereas the correct 
equilibrium condition is that of thermodynamics, of system vs. surrounding. Cauchy 
believed that in his continuity approach, P is independent of r. He did not consider that 
r is a measure of the scale of the system, and mathematically related to mass, which is a 
variable in his limit operation. Today r must be equated with the zero potential distance 
[Ref.8:63] which may be infinite or finite, but it cannot be zero. In thermodynamics, r is 
the radius of the thermodynamic system, and thus finite, like n and V in PV = nRT. 
Cauchy’s continuity approach is understood to be the proof of existence of the stress 
tensor. His reasoning violates the condition in eqn.12. (Batchelor [Ref.15:9f] noted the 
difference in behavior of volume terms and surface terms as V → 0, but took the scale-
independence of  f/A for granted.) 

6. Comment on Gibbs (1877) 

The first sentence in Gibbs (Ref.18:343) is: „In treating of the physical properties of a 
solid, it is necessary to consider its state of strain.”  
It is therefore postulated a priori that strain is a state function. Here Gibbs follows 
Lagrange, who in turn follows Euler. The natural alternative would have been 
displacement. If strain were a state function, all identical states of strain should cost the 
same amount of work. It is known experimentally that the energetics of deformation differ 
for pure shear and simple shear for identical measures of strain, both in the elastic and the 
plastic field (and in an inverse manner4). Hence the state of strain is of limited physical 
interest, it bears insufficient information – energetic and geometric. Strain cannot be a 
thermodynamic state function; it can at best be understood as a geometric configuration 
state, but not as an energetic state.  
 On p.345 Gibbs derives an expression where εV is the energy per unit volume, the 
dx' etc. are the coordinates of the reference (unloaded) state, the dx etc. are the coordinates 
of the deformed state, and the X etc. are the axes of an external coordinate set in which the 
x' and the x are related to one another. The expression is 

  '''
'

     '''  '' dzdydx
dx

dx
Xdzdydx XV δ=εδ . (16) 

“Now the first member of this equation evidently represents the work done upon the 
element by the surrounding elements; the second member must therefore have the same 
value. Since we must regard the forces acting on opposite faces of the elementary 
parallelepiped as equal and opposite, the whole work done will be zero except for the face 
which moves parallel to X.”  
 If so, the work done must cancel for an isochoric deformation since stretch work 
and contraction work have opposite sign. Hence the total work is zero. Gibbs evidently 
assumed that no work is done in a direction in which nothing happens. This is a Newtonian 
thought, and it cannot possibly be correct; thermodynamic work is always done upon a 
volume. If we consider a volume of air in a tube that is closed by a piston, and we move 
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the piston, the volume is changed. It is then found that a change of pressure has occurred 
on all air-container interfaces, not just the one that moved. If the substance were a solid 
(for the sake of the argument, the solid-tube interface is frictionless, and the solid is 
isotropic), the same result would be found.  
 The pressure in the Y and Z directions has increased although nothing has moved in 
these directions. This shows that the energetics of deformation can never be considered in 
one direction only. An example will demonstrate this in detail.  
 Step 1: if a gas is compressed in X, allowed to move in Z at constant external 
pressure, and Y is fixed, the gas will experience a change of shape – it is deformed – but 
not a change of state, E1 = E0 because V1 = V0. No work is done, no elastic potential has 
built up, w1 = 0. If the same is done with a solid it will bulge in Z, but not freely because of 
the internal bonds, and an elastic-anisotropically loaded state is reached; the solid has 
undergone a change of state, E1 > E0, w1 > 0. Step 2: if the dimensions X and Y are then 
kept fixed, and the walls in Z are moved back to their initial position, both gas and solid 
experience a change of state, E2 > E1 because V2 < V0, but whereas the gas is in an 
isotropically loaded state, the solid is still in an anisotropically loaded state. Step 3: to get 
the solid into an isotropically loaded state it is necessary to move all walls such that 
∂x/∂x' = ∂y/∂y' = ∂z/∂z', resulting in a further volume change, and E3 > E2; ditto for the gas.  
 The total work done on the gas in E3 is w2 + w3; the total work done on the solid is 
w1 + w2 + w3. If the initial dimensions are changed from E0 directly to E2, the work done 
on the gas is thus w2, for the solid it is w1 + w2. That is, the work component w2 is due to 
the fact that the walls in Z do not move. This is counterintuitive at first, but this is the 
physical reality. It should also be clear that the state E1 for the solid is not the lowest 
possible one for a given ∂x1/∂x'. Starting from E1, if the wall in Y is allowed to move at 
constant ∂x1/∂x', the solid would contract in Z, expand in Y until ∂y/∂y' = ∂z/∂z', and the 
change of state would result in an energetic relaxation. If the same would be done with a 
gas it would not work; there would be no driving force for the expansion in Y, i.e. no 
potential that seeks to attain its lowest energetic state. 
 Thus a change of state, isotropic or anisotropic, is by nature a 3D-problem. 
Processes in one direction are never independent of the others. This also demonstrates that 
the equation of state PV = nRT implies a particular set of boundary conditions – isotropic 
– which are always valid for slow flow of a gas because of the unbonded nature of gas, but 
not generally. All this was not considered by Gibbs, nor by anyone else. 
 It should be noted, too, that Gibbs’ conclusion in the quote above is incompatible 
with standard continuum mechanics: Gibbs assumed that no work is done perpendicular to 
X if no change of length occurs in Y and Z. In conventional continuum mechanics the 
attenuation in Y and Z due to stretch in X is geometrically taken care of by Poisson’s ratio, 
yet the work done is only considered to be due to stretch in X whereas work due to 
attenuation in Y and Z is never considered, and thus implicitly assumed to be zero. Neither 
can both assumption sets be valid simultaneously, nor is either one in line with reality in 
the present simplistic form. – It is curious that Gibbs18 was not aware, or did not recognize 
the relevance of Clausius6 and eqn.4 above.  
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7. Conclusion 

The form of the First Law as in eqn.5a-c is invalid. Eqn.15 shows that the stress tensor 
does not exist. A detailed and exhaustive discussion of the Euler-Cauchy theory is given in 
Ref.4 where it is shown that the Euler-Cauchy theory, and thus the entire body of 
continuum mechanics, is profoundly incompatible with the theory of potentials;8 in fact, 
the latter is entirely unknown in mechanics of solids although it is the theoretical 
framework of classical physics. The known theories of elastic deformation are therefore in 
need of revision. It must be realized that the simplest elastic law known to us is Boyle’s 
law which so far only gives us what may be called an isotropic deformation, a volume 
change, for an ideal gas. A proper deformation theory must start with the First Law and the 
equation of state PV = nRT, and be fully compatible with general thermodynamics.19    
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